

Dynegy Midwest Generation, LLC 1500 Eastport Plaza Dr. Collinsville, IL 62234

January 30, 2024

Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794-9276

Re: Vermilion New East Ash Pond (IEPA ID: W1838000002-04) 2023 Annual Consolidated Report

Dear Mr. LeCrone:

In accordance with 35 IAC § 845.550, Dynegy Midwest Generation, LLC (DMG) is submitting the annual consolidated report for the Vermilion New East Ash Pond (IEPA ID: W1838000002-04), as enclosed.

Sincerely,

Dianna Sickner

Dianna Tickner Sr. Director Decommissioning & Demolition

Enclosures

Annual Consolidated Report Dynegy Midwest Generation, LLC Vermilion Power Plant New East Ash Pond; W1838000002-04

In accordance with 35 IAC § 845.550, Dynegy Midwest Generation, LLC (DMG) has prepared the annual consolidated report. The report is provided in three sections as follows:

Section 1

1) Annual CCR fugitive dust control report (Section 845.500(c))

Section 2

2) Annual inspection report (Section 845.540(b)), including:

- A) Annual hazard potential classification certification
- B) Annual structural stability assessment certification
- C) Annual safety factor assessment certification
- D) Inflow design flood control system plan certification

Section 3

3) Annual Groundwater Monitoring and Corrective Action Report (Section 845.610(e))

Section 1 Annual CCR Fugitive Dust Control Report

Annual CCR Fugitive Dust Control Report for

Vermilion Power Plant

Prepared for:

Owner/Operator: Dynegy Midwest Generation, LLC 1500 Eastport Plaza Drive Collinsville, IL 62234

Facility Address: Vermilion Power Plant 10188 East 2150 North Rd Oakwood, IL 61858 IEPA ID # W1838000002 - 01,03,04

> Report Completed January 2024

Vermilion Power Plant ANNUAL CCR FUGITIVE DUST CONTROL REPORT

Reporting Year: 2023

Completed by: _ Drammar Jahner

Sr. Director, Decommissioning and Demolition Title

This Annual CCR Fugitive Dust Control Report has been prepared for the Vermilion Power Plant in accordance with 35 I.A.C. 845.500. Section 1 provides a description of the actions taken to control CCR fugitive dust at the facility during the reporting year, including a summary of any corrective measures taken. Section 2 provides a record of citizen complaints received concerning CCR fugitive dust at the facility during the reporting year, including a summary of any corrective measures taken.

Section 1: Actions Taken to Control CCR Fugitive Dust

In accordance with the Vermilion Power Plant CCR Fugitive Dust Control Plan (Plan), the following control measures were used to manage the CCR fugitive dust from becoming airborne at the facility during the reporting year:

Table. Control	Table. Control Measures for CCR Management in CCR Surface Impoundments							
CCR Activity	CCR Fugitive Dust Control Measures	Applicability and Appropriateness of Control Measures						
	Water dry CCR material disturbed during routine maintenance, as necessary.	Wetting CCR reduces the potential for CCR fugitive dust generation during handling of CCR during routine maintenance if handling is required.						
Management of CCR in the facility's CCR unit	Water areas of exposed CCR in CCR surface impoundments, as necessary.	Water will be applied to areas of exposed CCR to maintain moisture content to minimize the potential for CCR fugitive dust generation in excessively dry or windy conditions.						
	Allow naturally occurring grass vegetation to develop in areas of exposed CCR in CCR surface impoundments, as necessary.	Vegetation provides a wind screen and/or cover to reduce wind entrainment of CCR.						
	Apply chemical dust suppressant on areas of exposed CCR in CCR surface impoundments, as necessary.	Mixing an appropriate chemical dust suppressant with water and applying to areas of exposed CCR will minimize the potential for CCR fugitive dust generation in excessively dry or windy conditions.						

Table: Control Measures for CCR Management in CCR Surface Impoundments

Based on a review of the Plan and inspections associated with CCR fugitive dust control performed in the reporting year, the control measures identified in the Plan as implemented at the facility effectively minimized CCR from becoming airborne at the facility. The Vermilion Power Plant ceased to operate in 2011.

No material changes occurred in the reporting year in site conditions potentially resulting in CCR fugitive dust becoming airborne at the facility that warrant an amendment of the Plan.

Section 2: Record of Citizen Complaints

In the event the owner or operator of the facility receives a citizen complaint involving a CCR fugitive dust event at the facility, relevant information about the compliant will be logged. Information that will be recorded includes, as applicable:• Date/Time the complaint is received.

- Date/Time the complaint is received
- Date/Time and duration of the CCR fugitive dust event
- Description of the nature of the CCR fugitive dust event
- Name of the citizen entering the complaint (if provided)
- Address & phone number of citizen entering the complaint (if provided)
- Name of the personnel who took the complaint
- All actions taken to assess and resolve the complaint.

No citizen complaints were received regarding CCR fugitive dust at Vermilion Power Plant in the reporting year.

Section 2

Annual inspection report (Section 845.540(b)), including:

- A) Annual hazard potential classification certification, if applicable (Section 845.440)
- B) Annual structural stability assessment certification, if applicable (Section 845.450)
- C) Annual safety factor assessment certification, if applicable (Section 845.460)
- D) Inflow design flood control system plan certification (Section 845.510(c))

ANNUAL INSPECTION BY A QUALIFIED PROFESSIONAL ENGINEER 35 IAC § 845.540

(b)(1) The CCR surface impoundment must be inspected on an annual basis by a qualified professional engineer to ensure that the design, construction, operation, and maintenance of the CCR surface impoundment is consistent with recognized and generally accepted engineering standards. The inspection must, at a minimum, include:

A) A review of available information regarding the status and condition of the CCR surface impoundment, including files available in the operating record (e.g., CCR surface impoundment design and construction information required by Sections 845.220(a)(1) and 845.230(d)(2)(A), previous structural stability assessments required under Section 845.450, the results of inspections by a qualified person, and results of previous annual inspections);

B) A visual inspection of the CCR surface impoundment to identify signs of distress or malfunction of the CCR surface impoundment and appurtenant structures;

C) A visual inspection of any hydraulic structures underlying the base of the CCR surface impoundment or passing through the dike of the CCR surface impoundment for structural integrity and continued safe and reliable operation;

D) The annual hazard potential classification certification, if applicable (see Section 845.440);

E) The annual structural stability assessment certification, if applicable (see Section 845.450);

F) The annual safety factor assessment certification, if applicable (see Section 845.460); and

G) The inflow design flood control system plan certification (see Section 845.510(c)).

SITE INFORMATION				
	Vermilion Power Station			
Site Name / Address / Date of Inspection	Vermilion County, Illinois 61858			
	10/11/2023			
Operator Name / Address	Dynegy Midwest Generation, LLC			
Operator Name / Address	1500 Eastport Plaza Drive, Collinsville, IL 62234			
CCR unit	New East Ash Pond			

INSPECTION REPORT 35 IAC § 845.540	
(b)(1)(D) The annual hazard potential classification certification, if applicable (see Section 845.440).	Based on a review of the CCR unit's annual hazard potential classification, the unit is classified as a Class II CCR surface impoundment.
(b)(2)(A) Any changes in geometry of the structure since the previous annual inspection.	Based on a review of the CCR unit's records and visual observation during the on-site inspection, no changes in geometry of the structure have taken place since the previous annual inspection.
(b)(2)(B) The location and type of existing instrumentation and the maximum recorded readings of each instrument since the previous annual inspection	There is currently no active instrumentation at the site
b)(2)(C) The approximate minimum, maximum, and present depth and elevation of the impounded water and CCR since the previous annual inspection;	See the attached.
b)(2)(D) The storage capacity of the impounding structure at the time of the inspection	Approximately 375 acre-feet
(b)(2)(E) The approximate volume of the impounded water and CCR contained in the unit at the time of the inspection.	Approximately 213 acre-feet
(b)(2)(F) Any appearances of an actual or potential structural weakness of the CCR unit, in addition to any existing conditions that are disrupting or have the potential to disrupt the operation and safety of the CCR unit	Based on a review of the CCR unit's records and visual observation during the on-site inspection, there was no appearance of an actual or potential structural weakness of the CCR unit, nor an existing condition that is disrupting or would disrupt the operation and safety of the unit.

INSPECTION REPORT 35 IAC § 845.540	
(b)(2)(G) Any other changes that may have affected the stability or operation of the impounding structure since the previous annual inspection.	Based on a review of the CCR unit's records and visual observation during the on-site inspection, no other changes which may have affected the stability or operation of the CCR unit have taken place since the previous annual inspection.
(b)(1)(G) The inflow design flood control system plan certification (see Section 845.510(c))	Based on a review of the CCR unit's records, the CCR unit is designed, operated, and maintained to adequately manage the flow from the CCR impoundment and control the peak discharge from the inflow design flood.

35 IAC § 845.540 - Annual inspection by a qualified professional engineer.

I, James Knutelski, P.E., certify under penalty of law that the information submitted in this report was prepared by me or under my direct supervision and that I am a duly Registered Professional Engineer under the laws of the state of Illinois. The information submitted, is to the best of my knowledge and belief, true, accurate and complete. Based on the annual inspection, the design, construction, operation, and maintenance of the CCR Unit is consistent with recognized and generally accepted good engineering standards. Based on a review of the records for the CCR unit and a visual inspection of the unit to document no material changes to the unit, the hazard potential classification was conducted in accordance with the requirements of Section 845.450, the safety factor assessment was conducted in accordance with the requirements of Section 845.450, the safety factor assessment was conducted in accordance with the requirements of section 845.450, and the inflow design flood control system plan assessment was conducted in accordance with the requirements of Section 845.510.

James Knutelski, PE

Illinois PE No. 062-054206, Expires: 11/30/2025 Date: 01/07/2024 Site Name:Vermilion Power StationCCR Unit:New East Ash Pond

35 IAC § 845.540 (b)(2)(B)			35 IAC § 845.540 (b)(2)(C)						
la staura sat ID		Maximum recorded reading		Approximate Depth / Elevation					
#	Туре	since previous annual inspection (ft)	Since previous	Elevation (ft) Dep			Depth (ft)		
No active instrumentation		inspection.	Minimum	Present	Maximum	Minimum	Present	Maximum	
			Impounded Water		595			10	
			CCR	585		606			21

Section 3

Annual Groundwater Monitoring and Corrective Action Report (Section 845.610(e))

Prepared for Dynegy Midwest Generation, LLC

Date January 31, 2024

Project No. 1940103649-014

2023 35 I.A.C. § 845 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT NEW EAST ASH POND VERMILION POWER PLANT OAKWOOD, ILLINOIS IEPA ID NO. W183800002-04

2023 35 I.A.C. § 845 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT VERMILION POWER PLANT NEW EAST ASH POND

Project name Project no. Recipient Document type Version Date Prepared by Checked by Approved by Description Vermilion Power Plant New East Ash Pond 1940103649-014 Dynegy Midwest Generation, LLC Annual Groundwater Monitoring and Corrective Action Report FINAL January 31, 2024 Scott S. Woods Lauren D. Cook Nikki M. Pagano PE, PG Annual Report required by 35 I.A.C. § 845 Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

Scott S. Woods Hydrogeologist

all A

Nikki M. Pagano, PE, PG Senior Managing Engineer

CONTENTS

EXECU	TIVE SUMMARY	3
1.	Introduction	5
2.	Monitoring and Corrective Action Program Status	7
3.	Key Actions Completed in 2023	8
3.1	Sample and Analysis Summary	8
3.2	Exceedances of GWPS	10
3.3	Exceedances of Background	10
4.	Problems Encountered and Actions to Resolve the Problems	11
5.	Key Activities Planned for 2024	12
6.	References	13

TABLES (IN TEXT)

Table A35 I.A.C. § 845 Monitoring Program Summary for 2023

TABLES (ATTACHED)

Table 1	Field Parameters and Analytical Results – Quarter 2, 2023
	Field Parameters and Analytical Results – Quarter 3, 2023
Table 2	Comparison of Statistical Results to GWPS – Quarter 2, 2023
	Comparison of Statistical Results to GWPS – Quarter 3, 2023

FIGURES (ATTACHED)

- Figure 1 Monitoring Well Location Map
- Figure 2 GWPS Exceedance Map Upper Unit Quarters 2-3, 2023
- Figure 3 GWPS Exceedance Map Bedrock Confining Unit Quarters 2-3, 2023
- Figure 4 Potentiometric Surface Map, May 19, 2023
- Figure 5 Potentiometric Surface Map, June 19, 2023
- Figure 6 Potentiometric Surface Map, July 19, 2023
- Figure 7 Potentiometric Surface Map, August 19, 2023
- Figure 8 Potentiometric Surface Map, September 18, 2023
- Figure 9 Potentiometric Surface Map, October 26, 2023
- Figure 10 Potentiometric Surface Map, November 27, 2023
- Figure 11 Potentiometric Surface Map, December 14, 2023

ATTACHMENTS

- Attachment A Groundwater Elevation Data
- Attachment B Alternative Source Demonstration and IEPA Denial Letter
- Attachment C Corrective Measures Assessment Extension Request and IEPA Approval Letter
- Attachment D Comparison of Statistical Results to Background Quarter 2, 2023
 - Comparison of Statistical Results to Background Quarter 3, 2023

ACRONYMS AND ABBREVIATIONS

35 I.A.C.	Title 35 of the Illinois Administrative Code
CCA	compliance commitment agreement
СМА	assessment of corrective measures
CCR	coal combustion residuals
E001	Quarter 2, 2023 sampling event
E002	Quarter 3, 2023 sampling event
E003	Quarter 4, 2023 sampling event
DMG	Dynegy Midwest Generation, LLC
GWPS	groundwater protection standard
ID	identification
IEPA	Illinois Environmental Protection Agency
NEAP	New East Ash Pond
NID	National Inventory of Dams
No.	number
Ramboll	Ramboll Americas Engineering Solutions, Inc.
SI	surface impoundment
SSI	statistically significant increase
VPP	Vermilion Power Plant

EXECUTIVE SUMMARY

This report has been prepared to provide the information required by Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845.610(e) (*Annual Groundwater Monitoring and Corrective Action Report*) for the New East Ash Pond (NEAP) located at Vermilion Power Plant (VPP) near Oakwood, Illinois. The NEAP is recognized by coal combustion residuals (CCR) unit identification (ID) number (No.) 912, Illinois Environmental Protection Agency (IEPA) ID No. W1838000002-04, and National Inventory of Dams (NID) No. IL50291.

As required by 35 I.A.C. § 845, an operating permit application for the NEAP was submitted by Dynegy Midwest Generation (DMG), LLC to IEPA by October 31, 2021 in accordance with the requirements specified in 35 I.A.C. § 845.230(d) and is pending approval. Consistent with compliance commitment agreements (CCAs) entered into between other facility owners and IEPA on December 28, 2022, groundwater monitoring in accordance with the proposed groundwater monitoring plan and sampling methodologies provided in the operating permit application for the NEAP commenced in the second quarter of 2023. All available groundwater monitoring data collected in 2023 is summarized in **Table 1** (field parameters and analytical results) and **Attachment A** (groundwater monitoring shall be conducted in accordance with that operating permit.

In accordance with 35 I.A.C. § 845.610(b)(3)(C) and the statistical analysis plan submitted with the operating permit application (Appendix A of the Groundwater Monitoring Plan [Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021]), statistically derived values for constituent concentrations observed at compliance monitoring wells were compared with the groundwater protection standards (GWPSs) described in 35 I.A.C. § 845.600 to determine exceedances of the GWPS (**Table 2**). The following GWPS exceedances were determined in 2023²:

- Chloride in 35D and 70D
- Lithium in 35D and 70D
- Sulfate in 35D and 70S
- Total Dissolved Solids (TDS) in 35D and 70S

An Alternative Source Demonstration (ASD) was completed on December 1, 2023 for the GWPS exceedances detected during the Quarter 2, 2023 sampling event. The ASD was denied by IEPA on December 28, 2023 (**Attachment B**). Therefore, an assessment of corrective measures (CMA) was initiated on December 31, 2023 in accordance with 35 I.A.C. § 845.660. A CMA extension request was submitted to IEPA on January 2, 2024 and approved on January 3, 2024 (**Attachment C**). Because the CMA is in progress, a remedy has not yet been selected under 35 I.A.C. § 845.670 and remedial activities have not been initiated under 35 I.A.C. § 845.780 in 2023. In accordance with 35 I.A.C. § 845.610(b)(3)(B), statistically derived values for

¹ Analytical data received after December 31, 2023 will be reported in the Quarter 4, 2023 Groundwater Monitoring Data and Detected Exceedances Report.

² GWPS exceedances determined after January 31, 2024 will be reported in the Quarter 4, 2023 Groundwater Monitoring Data and Detected Exceedances Report.

constituent concentrations observed at compliance monitoring wells were also evaluated quarterly for statistical exceedances over background levels (**Attachment D**).

1. INTRODUCTION

This report has been prepared by Ramboll Americas Engineering Solutions, Inc. (Ramboll) on behalf of DMG, to provide the information required by 35 I.A.C. § 845.610(e) for the NEAP located at VPP near Oakwood, Illinois. The owner or operator of a CCR surface impoundment (SI) must prepare and submit to IEPA by January 31st of each year an Annual Groundwater Monitoring and Corrective Action Report for the preceding calendar year as part of the Annual Consolidated Report required by 35 I.A.C. § 845.550. The Annual Groundwater Monitoring and Corrective Action Report shall document the status of the groundwater monitoring and corrective action plan for the CCR SI (**Section 2**), summarize key actions completed, including the status of permit applications and Agency approvals (**Section 3**), describe any problems encountered and actions to resolve the problems (**Section 4**), and project key activities for the upcoming year (**Section 5**).

At a minimum, the annual report must contain the following information, to the extent available:

- A. A map, aerial image, or diagram showing the CCR SI and all background (or upgradient) and [downgradient] compliance monitoring wells, including the well identification numbers, that are part of the groundwater monitoring program for the CCR SI (Figure 1) and a visual delineation of any exceedances of the [groundwater protection standard] GWPS (Figures 2 and 3).
- B. Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken (Section 3, paragraph 1).
- C. A potentiometric surface map for each groundwater elevation sampling event required by 35 I.A.C. § 845.650(b)(2) (**Figures 4 through 11**).
- D. In addition to all the monitoring data obtained under 35 I.A.C. §§ 845.600-680, a summary including the number of groundwater samples that were collected for analysis for each background and [downgradient] compliance well, and the dates the samples were collected (Section 3.1 and Table A).
- E. A narrative discussion of any statistically significant increases (SSIs) over background levels for the constituents listed in 35 I.A.C. § 845.600 (Section 3.3 and Attachment D).
- F. Other information required to be included in the annual report as specified in 35 I.A.C. §§ 845.600-680.

A section at the beginning of the annual report that provides an overview of the current status of the groundwater monitoring program and corrective action plan for the CCR SI (see **Executive Summary**). At a minimum, the summary must:

- A. Specify whether groundwater monitoring data shows an SSI over background concentrations for one or more constituents listed in 35 I.A.C. § 845.600.
- B. Identify those constituents having an SSI over background concentrations and the names of the monitoring wells associated with the SSI(s).
- C. Specify whether there have been any exceedances of the GWPS for one or more constituents listed in 35 I.A.C. § 845.600.

- D. Identify those constituents with exceedances of the GWPS in 35 I.A.C. § 845.600 and the names of the monitoring wells associated with the exceedance.
- E. Provide the date when the assessment of corrective measures was initiated for the CCR SI.
- F. Provide the date when the assessment of corrective measures was completed for the CCR SI.
- G. Specify whether a remedy was selected under 35 I.A.C. § 845.670 during the current annual reporting period, and if so, the date of remedy selection.
- H. Specify whether remedial activities were initiated or are ongoing under 35 I.A.C. § 845.780 during the current annual reporting period.

This report provides the required information for the NEAP for calendar year 2023.

2. MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

An operating permit application for the NEAP was submitted by DMG to IEPA by October 31, 2021 in accordance with the requirements specified in 35 I.A.C. § 845.230(d) and is pending approval. Consistent with the CCA entered into between other facility owners and IEPA, groundwater monitoring in accordance with the proposed groundwater monitoring plan and sampling methodologies provided in the operating permit application for the NEAP commenced in the second quarter of 2023. After the NEAP has been issued an approved operating permit, groundwater monitoring shall be conducted in accordance with that operating permit.

A construction permit application for the NEAP was also submitted by DMG to IEPA on July 28, 2022 in accordance with the requirements specified in 35 I.A.C. § 845.220(a) and (d) and is pending approval.

As noted in the **Executive Summary** and **Section 3.2**, GWPS exceedances were determined for the NEAP in 2023 The ASD was denied by IEPA on December 28, 2023 (**Attachment B**). Therefore, a CMA was initiated on December 31, 2023 in accordance with 35 I.A.C. § 845.660. A CMA extension request was submitted to IEPA on January 2, 2024 and approved on January 3, 2024 (**Attachment C**). Because the CMA is in progress, a remedy has not yet been selected under 35 I.A.C. § 845.670 and remedial activities have not been initiated under 35 I.A.C. § 845.780 in 2023.

3. KEY ACTIONS COMPLETED IN 2023

The proposed 35 I.A.C. § 845 monitoring system is presented in **Figure 1**. No wells were installed or decommissioned in 2023.

Monitoring well inspections and redevelopment of the monitoring wells that were not sampled in 2022 were also completed prior to initiating groundwater monitoring in the second quarter of 2023.

Pressure transducers equipped with data loggers were deployed in monitoring system monitoring wells for measurement of monthly water level elevations as required by 35 I.A.C. § 845.650(b)(2). **Attachment A** summarizes the groundwater elevation data collected in 2023. Potentiometric surfaces for May through December 2023 are included in **Figures 4 through 11**³.

A summary of the samples collected in 2023 is included in **Section 3.1**. Narrative discussions of exceedances of GWPSs and background are included in **Section 3.2** and **Section 3.3**, respectively. Statistical procedures used to evaluate groundwater results are provided in Appendix A of the Groundwater Monitoring Plan provided in the operating permit application (Ramboll, 2021).

3.1 Sample and Analysis Summary

One groundwater sample was collected from each background and compliance well during each quarterly monitoring event beginning in the second quarter of 2023⁴. All samples were collected and analyzed in accordance with the Groundwater Monitoring Plan provided in the operating permit application (Ramboll, 2021). A summary of the samples collected from background and compliance monitoring wells in 2023 is included in **Table A** on the following page. **Table 1** is a summary of the field parameters and analytical results from the 2023 sampling events. Laboratory analytical reports and field data sheets were provided in the quarterly Groundwater Monitoring Data and Detected Exceedances Reports for Quarter 2 and Quarter 3 (Ramboll, 2023a; Ramboll, 2023b); therefore, these reports are not attached to this annual report to avoid reproduction of lengthy data transmittals that have been previously provided in hardcopy. Analytical data received after December 31, 2023 will be reported in the Quarter 4, 2023 Groundwater Monitoring Data and Detected Exceedances Report.

 $^{^{\}rm 3}$ Groundwater elevation data was not collected in April 2023.

⁴ 16A could not be sampled in Quarter 2 due to a broken fitting in the sample line. 16B, 35S, and 71S could not be sampled in Quarter 2 and Quarter 3 due to insufficient water in the wells. 71D purged dry during Quarter 3 sampling. NED 1 could not be accessed in Quarter 2.

Event ID	Sampling Dates ^{1, 2, 3}	Analytical Data Receipt Date ⁴	Exceedance Determination Date	ASD Completion Date	Required CMA Initiation Date ⁵
E001 ⁶	June 20 - 29, 2023	August 3, 2023	October 2, 2023	December 1, 2023	December 31, 2023
E002 ⁷	September 19 - 26, 2023	November 16, 2023	January 15, 2023	TBD	TBD
E003	November 28 - 29, 2023	January 9, 2024	TBD	TBD	TBD

Table A. 35 I.A.C. § 845 Monitoring Program Summary for 2023

Notes:

ASD: Alternative Source Demonstration

CMA: Corrective Measures Assessment

NA: not applicable

TBD: to be determined in 2024

¹ All samples were analyzed for the parameters listed in 35 I.A.C. § 845.600, calcium, and turbidity.

² The following background wells were sampled for each event: 10 and 22

³ The following compliance wells were sampled for each event: 16A, 16B, 35D, 35S, 70D, 70S, 71D, and 71S

⁴ Analytical data received after December 31, 2023 and GWPS exceedances determined after January 31, 2024 will be reported in the Quarter 4, 2023 Groundwater Monitoring Data and Detected Exceedances Report.

⁵ Exceedances for events E002 and E003 may be incorporated into the CMA initiated after event E001 on a case by case basis, as opposed to generating a new CMA.

⁶ 16A could not be sampled in Quarter 2 due to a broken fitting in the sample line. 16B, 35S, and 71S could not be sampled due to insufficient water in well. NED 1 could not be accessed in Quarter 2.

⁷ 16B, 35S, and 71S could not be sampled in Quarter 3 due to insufficient water in well. 71D purged dry while sampling.

3.2 Exceedances of GWPS

In accordance with 35 I.A.C. § 845.610(b)(3)(C), the statistically derived values identified as Statistical Results in **Table 2** were compared with the GWPSs described in 35 I.A.C. § 845.600 to determine exceedances of the GWPS. The following statistical exceedances of the GWPSs were determined and are shown on **Figures 2 and 3**⁵:

- Chloride in 35D and 70D
- Lithium in 35D and 70D
- Sulfate in 35D and 70S
- TDS in 35D and 70S

As allowed in 35 I.A.C. § 845.650(e), an ASD was evaluated for the determined exceedances of the GWPSs summarized above. The ASD was denied by IEPA on December 28, 2023 (**Attachment B**). Therefore, a CMA was initiated on December 31, 2023 in accordance with 35 I.A.C. § 845.660. A CMA extension request was submitted to IEPA on January 2, 2024 and approved on January 3, 2024 (**Attachment C**). Because the CMA is in progress, a remedy has not yet been selected under 35 I.A.C. § 845.670 and remedial activities have not been initiated under 35 I.A.C. § 845.780 in 2023.

3.3 Exceedances of Background

In accordance with 35 I.A.C. § 845.610(b)(3)(B), groundwater monitoring data were evaluated quarterly for statistical exceedances over background levels for the constituents listed in 35 I.A.C. § 845.600. **Attachment D** shows the statistically derived values compared to background levels.

⁵ GWPS exceedances determined after January 31, 2024 will be reported in the Quarter 4, 2023 Groundwater Monitoring Data and Detected Exceedances Report.

4. PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

Groundwater monitoring commenced in the second quarter of 2023. Groundwater samples were collected and analyzed in accordance with the Groundwater Monitoring Plan provided in the operating permit application (Ramboll, 2021) and all data were accepted. After the NEAP has been issued an approved operating permit, groundwater monitoring shall be conducted in accordance with that operating permit.

Due to malfunctioning pressure transducer, data gaps exist in monthly water level elevations prior to the fourth quarter. Monthly depth to water measurements were collected manually in the fourth quarter. Pressure transducers were refurbished and were redeployed in January 2024.

5. KEY ACTIVITIES PLANNED FOR 2024

The following key activities are planned for 2024:

- Continuation of groundwater monitoring in accordance with the proposed groundwater monitoring plan and sampling methodologies provided in the operating permit application for the NEAP. After the NEAP has been issued an approved operating permit, groundwater monitoring shall be conducted in accordance with that operating permit. Groundwater monitoring will include:
 - Monthly groundwater elevations
 - Quarterly groundwater sampling
- Complete evaluation of analytical data from the compliance wells to determine whether exceedances above GWPSs have occurred.
- -If a GWPS exceedance is identified, potential alternative sources (*i.e.*, a source other than the CCR unit caused the GWPS exceedance or that the exceedance resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated.
 - If an alternative source is identified to be the cause of the GWPS exceedance, a written demonstration will be completed within 60 days of determination and included in the 2024 Annual Groundwater Monitoring and Corrective Action Report.
 - If an alternative source(s) is not identified to be the cause of the GWPS exceedance, the applicable requirements of 35 I.A.C. § 845.660 (*i.e.*, assessment of corrective measures) will be met.
- The CMA process will continue in accordance with 35 I.A.C. § 845.660 in 2024. A CMA extension request was submitted on January 2, 2024, and approved by IEPA on January 3, 2024. The CMA will be submitted to IEPA on or before May 29, 2024.

6. **REFERENCES**

Illinois Administrative Code, Title 35, Subtitle G, Chapter I, Subchapter J, Part 845: Standards for The Disposal Of Coal Combustion Residuals In Surface Impoundments, effective April 21, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021. *Groundwater Monitoring Plan.* Vermilion Power Plant, New East Ash Pond, Oakwood, Illinois. Dynegy Midwest Generation, LLC. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2023a. 35 I.A.C. § 845.610(B)(3)(D) Groundwater Monitoring Data and Detected Exceedances, 2023 Quarter 2, New East Ash Pond, Vermilion Power Plant, Oakwood, Illinois. October 2, 2023.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2023b. 35 I.A.C. § 845.610(B)(3)(D) Groundwater Monitoring Data and Detected Exceedances, 2023 Quarter 3, New East Ash Pond, Vermilion Power Plant, Oakwood, Illinois. January 15, 2023.

TABLES

Well ID	Well Type	Event	Date	Parameter	Result	Unit
10	Background	E001	06/20/2023	Antimony, total	0.0004 U	mg/L
10	Background	E001	06/20/2023	Arsenic, total	0.0087 U	mg/L
10	Background	E001	06/20/2023	Barium, total	0.0734	mg/L
10	Background	E001	06/20/2023	Beryllium, total	0.0002 U	mg/L
10	Background	E001	06/20/2023	Boron, total	0.0799 J	mg/L
10	Background	E001	06/20/2023	Cadmium, total	0.0005 U	mg/L
10	Background	E001	06/20/2023	Calcium, total	187	mg/L
10	Background	E001	06/20/2023	Chloride, total	4.00	mg/L
10	Background	E001	06/20/2023	Chromium, total	0.0028 U	mg/L
10	Background	E001	06/20/2023	Cobalt, total	0.0160 J	mg/L
10	Background	E001	06/20/2023	Dissolved Oxygen	3.28	mg/L
10	Background	E001	06/20/2023	Fluoride, total	0.140	mg/L
10	Background	E001	06/20/2023	Lead, total	0.004 U	mg/L
10	Background	E001	06/20/2023	Lithium, total	0.0145	mg/L
10	Background	E001	06/20/2023	Mercury, total	0.00006 U	mg/L
10	Background	E001	06/20/2023	Molybdenum, total	0.0037 U	mg/L
10	Background	E001	06/20/2023	Oxidation Reduction Potential	131	mV
10	Background	E001	06/20/2023	pH (field)	6.7	SU
10	Background	E001	06/20/2023	Radium 226 + Radium 228, total	1.08 J	pCi/L
10	Background	E001	06/20/2023	Selenium, total	0.0006 U	mg/L
10	Background	E001	06/20/2023	Specific Conductance @ 25C (field)	1,530	micromhos/cm
10	Background	E001	06/20/2023	Sulfate, total	248	mg/L
10	Background	E001	06/20/2023	Temperature	15.0	degrees C
10	Background	E001	06/20/2023	Thallium, total	0.001 U	mg/L
10	Background	E001	06/20/2023	Total Dissolved Solids	946	mg/L
10	Background	E001	06/20/2023	Turbidity, field	6.40	NTU
22	Background	E001	06/20/2023	Antimony, total	0.0004 U	mg/L
22	Background	E001	06/20/2023	Arsenic, total	0.0087 U	mg/L
22	Background	E001	06/20/2023	Barium, total	0.0807	mg/L
22	Background	E001	06/20/2023	Beryllium, total	0.0002 U	mg/L
22	Background	E001	06/20/2023	Boron, total	0.364	mg/L
22	Background	E001	06/20/2023	Cadmium, total	0.0005 U	mg/L
22	Background	E001	06/20/2023	Calcium, total	46.2	mg/L
22	Background	E001	06/20/2023	Chloride, total	8.00	mg/L

RAMBOLL

22	Background	E001	06/20/2023	Chromium, total	0.0028 U	mg/L
22	Background	E001	06/20/2023	Cobalt, total	0.0001 U	mg/L
22	Background	E001	06/20/2023	Dissolved Oxygen	0.700	mg/L
22	Background	E001	06/20/2023	Fluoride, total	0.410	mg/L
22	Background	E001	06/20/2023	Lead, total	0.004 U	mg/L
22	Background	E001	06/20/2023	Lithium, total	0.0316	mg/L
22	Background	E001	06/20/2023	Mercury, total	0.00006 U	mg/L
22	Background	E001	06/20/2023	Molybdenum, total	0.0037 U	mg/L
22	Background	E001	06/20/2023	Oxidation Reduction Potential	142	mV
22	Background	E001	06/20/2023	pH (field)	7.3	SU
22	Background	E001	06/20/2023	Radium 226 + Radium 228, total	1.26 J+	pCi/L
22	Background	E001	06/20/2023	Selenium, total	0.0006 U	mg/L

Dara"

Well ID	Well Type	Event	Date	Parameter	Result	Unit
22	Background	E001	06/20/2023	Specific Conductance @ 25C (field)	850	micromhos/cm
22	Background	E001	06/20/2023	Sulfate, total	30.0 J+	mg/L
22	Background	E001	06/20/2023	Temperature	13.4	degrees C
22	Background	E001	06/20/2023	Thallium, total	0.001 U	mg/L
22	Background	E001	06/20/2023	Total Dissolved Solids	462	mg/L
22	Background	E001	06/20/2023	Turbidity, field	2.80	NTU
35D	Compliance	E001	06/29/2023	Antimony, total	0.0004 U	mg/L
35D	Compliance	E001	06/29/2023	Arsenic, total	0.0087 U	mg/L
35D	Compliance	E001	06/29/2023	Barium, total	0.0237	mg/L
35D	Compliance	E001	06/29/2023	Beryllium, total	0.0002 U	mg/L
35D	Compliance	E001	06/29/2023	Boron, total	1.69	mg/L
35D	Compliance	E001	06/29/2023	Cadmium, total	0.0005 U	mg/L
35D	Compliance	E001	06/29/2023	Calcium, total	87.0	mg/L
35D	Compliance	E001	06/29/2023	Chloride, total	493	mg/L
35D	Compliance	E001	06/29/2023	Chromium, total	0.0028 U	mg/L
35D	Compliance	E001	06/29/2023	Cobalt, total	0.0004 J	mg/L
35D	Compliance	E001	06/29/2023	Dissolved Oxygen	0.980	mg/L
35D	Compliance	E001	06/29/2023	Fluoride, total	0.740	mg/L
35D	Compliance	E001	06/29/2023	Lead, total	0.004 U	mg/L
35D	Compliance	E001	06/29/2023	Lithium, total	0.144	mg/L
35D	Compliance	E001	06/29/2023	Mercury, total	0.00006 U	mg/L
35D	Compliance	E001	06/29/2023	Molybdenum, total	0.0037 U	mg/L
35D	Compliance	E001	06/29/2023	Oxidation Reduction Potential	-20.0	mV
35D	Compliance	E001	06/29/2023	pH (field)	7.3	SU
35D	Compliance	E001	06/29/2023	Radium 226 + Radium 228, total	0.624 <0	pCi/L
35D	Compliance	E001	06/29/2023	Selenium, total	0.0006 U	mg/L
35D	Compliance	E001	06/29/2023	Specific Conductance @ 25C (field)	5,200	micromhos/cm
35D	Compliance	E001	06/29/2023	Sulfate, total	1,340	mg/L
35D	Compliance	E001	06/29/2023	Temperature	14.2	degrees C
35D	Compliance	E001	06/29/2023	Thallium, total	0.001 U	mg/L
35D	Compliance	E001	06/29/2023	Total Dissolved Solids	3,370	mg/L
35D	Compliance	E001	06/29/2023	Turbidity, field	8.30	NTU
70S	Compliance	E001	06/21/2023	Antimony, total	0.0004 U	mg/L
70S	Compliance	E001	06/21/2023	Arsenic, total	0.0087 U	mg/L
70S	Compliance	E001	06/21/2023	Barium, total	0.0183	mg/L
70S	Compliance	E001	06/21/2023	Beryllium, total	0.0002 U	mg/L
70S	Compliance	E001	06/21/2023	Boron, total	0.398	mg/L
70S	Compliance	E001	06/21/2023	Cadmium, total	0.0005 U	mg/L
70S	Compliance	E001	06/21/2023	Calcium, total	224	mg/L
70S	Compliance	E001	06/21/2023	Chloride, total	14.0	mg/L
70S	Compliance	E001	06/21/2023	Chromium, total	0.0028 U	mg/L
70S	Compliance	E001	06/21/2023	Cobalt, total	0.0003 J	mg/L
70S	Compliance	E001	06/21/2023	Dissolved Oxygen	0.540	mg/L
70S	Compliance	E001	06/21/2023	Fluoride, total	0.150	mg/L
70S	Compliance	E001	06/21/2023	Lead, total	0.004 U	mg/L
70S	Compliance	E001	06/21/2023	Lithium, total	0.0150	mg/L

RAMBOLL

Well ID	Well Type	Event	Date	Parameter	Result	Unit
70S	Compliance	E001	06/21/2023	Mercury, total	0.00006 U	mg/L
70S	Compliance	E001	06/21/2023	Molybdenum, total	0.0037 U	mg/L
70S	Compliance	E001	06/21/2023	Oxidation Reduction Potential	14.0	mV
70S	Compliance	E001	06/21/2023	pH (field)	6.9	SU
70S	Compliance	E001	06/21/2023	Radium 226 + Radium 228, total	0.0747	pCi/L
70S	Compliance	E001	06/21/2023	Selenium, total	0.0006 U	mg/L
70S	Compliance	E001	06/21/2023	Specific Conductance @ 25C (field)	1,570	micromhos/cm
70S	Compliance	E001	06/21/2023	Sulfate, total	602	mg/L
70S	Compliance	E001	06/21/2023	Temperature	10.6	degrees C
70S	Compliance	E001	06/21/2023	Thallium, total	0.001 U	mg/L
70S	Compliance	E001	06/21/2023	Total Dissolved Solids	1,270	mg/L
70S	Compliance	E001	06/21/2023	Turbidity, field	12.0	NTU
70D	Compliance	E001	06/20/2023	Antimony, total	0.0004 U	mg/L
70D	Compliance	E001	06/20/2023	Arsenic, total	0.0087 U	mg/L
70D	Compliance	E001	06/20/2023	Barium, total	0.399	mg/L
70D	Compliance	E001	06/20/2023	Beryllium, total	0.0002 U	mg/L
70D	Compliance	E001	06/20/2023	Boron, total	1.57	mg/L
70D	Compliance	E001	06/20/2023	Cadmium, total	0.0005 U	mg/L
70D	Compliance	E001	06/20/2023	Calcium, total	89.8	mg/L
70D	Compliance	E001	06/20/2023	Chloride, total	573 J-	mg/L
70D	Compliance	E001	06/20/2023	Chromium, total	0.0028 U	mg/L
70D	Compliance	E001	06/20/2023	Cobalt, total	0.0004 J	mg/L
70D	Compliance	E001	06/20/2023	Dissolved Oxygen	0.810	mg/L
70D	Compliance	E001	06/20/2023	Fluoride, total	0.430	mg/L
70D	Compliance	E001	06/20/2023	Lead, total	0.004 U	mg/L
70D	Compliance	E001	06/20/2023	Lithium, total	0.0850	mg/L
70D	Compliance	E001	06/20/2023	Mercury, total	0.00006 U	mg/L
70D	Compliance	E001	06/20/2023	Molybdenum, total	0.0037 U	mg/L
70D	Compliance	E001	06/20/2023	Oxidation Reduction Potential	142	mV
70D	Compliance	E001	06/20/2023	pH (field)	6.8	SU
70D	Compliance	E001	06/20/2023	Radium 226 + Radium 228, total	0.606 J+	pCi/L
70D	Compliance	E001	06/20/2023	Selenium, total	0.0006 U	mg/L
70D	Compliance	E001	06/20/2023	Specific Conductance @ 25C (field)	3,390	micromhos/cm
70D	Compliance	E001	06/20/2023	Sulfate, total	52.0 J-	mg/L
70D	Compliance	E001	06/20/2023	Temperature	12.8	degrees C
70D	Compliance	E001	06/20/2023	Thallium, total	0.001 U	mg/L
70D	Compliance	E001	06/20/2023	Total Dissolved Solids	1,590	mg/L
70D	Compliance	E001	06/20/2023	Turbidity, field	89.0	NTU
71D	Compliance	E001	06/20/2023	Antimony, total	0.0004 U	mg/L
71D	Compliance	E001	06/20/2023	Arsenic, total	0.0087 U	mg/L
71D	Compliance	E001	06/20/2023	Barium, total	0.531	mg/L
71D	Compliance	E001	06/20/2023	Beryllium, total	0.0002 U	mg/L
71D	Compliance	E001	06/20/2023	Boron, total	1.60	mg/L
71D	Compliance	E001	06/20/2023	Cadmium, total	0.0005 U	mg/L
71D	Compliance	E001	06/20/2023	Calcium, total	47.3	mg/L
71D	Compliance	E001	06/20/2023	Chloride, total	733	mg/L

RAMBOLL

Well ID	Well Type	Event	Date	Parameter	Result	Unit
71D	Compliance	E001	06/20/2023	Chromium, total	0.0028 U	mg/L
71D	Compliance	E001	06/20/2023	Cobalt, total	0.0006 J	mg/L
71D	Compliance	E001	06/20/2023	Dissolved Oxygen	0.750	mg/L
71D	Compliance	E001	06/20/2023	Fluoride, total	0.520	mg/L
71D	Compliance	E001	06/20/2023	Lead, total	0.004 U	mg/L
71D	Compliance	E001	06/20/2023	Lithium, total	0.0792	mg/L
71D	Compliance	E001	06/20/2023	Mercury, total	0.00006 U	mg/L
71D	Compliance	E001	06/20/2023	Molybdenum, total	0.0037 U	mg/L
71D	Compliance	E001	06/20/2023	Oxidation Reduction Potential	176	mV
71D	Compliance	E001	06/20/2023	pH (field)	6.9	SU
71D	Compliance	E001	06/20/2023	Radium 226 + Radium 228, total	2.40 J+	pCi/L
71D	Compliance	E001	06/20/2023	Selenium, total	0.0006 U	mg/L
71D	Compliance	E001	06/20/2023	Specific Conductance @ 25C (field)	3,880	micromhos/cm
71D	Compliance	E001	06/20/2023	Sulfate, total	56.0	mg/L
71D	Compliance	E001	06/20/2023	Temperature	12.8	degrees C
71D	Compliance	E001	06/20/2023	Thallium, total	0.001 U	mg/L
71D	Compliance	E001	06/20/2023	Total Dissolved Solids	1,990	mg/L
71D	Compliance	E001	06/20/2023	Turbidity, field	9.60	NTU

Notes:

C = Celsius

cm = centimeter

mg/L = milligrams per liter

mV = millivolts NTU = Nephelometric Turbidity Units

pCi/L = picocuries per liter SU = Standard Units

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. J = The result is an estimated quantity, but the result may be biased low. J + = The result is an estimated quantity, but the result may be biased high.

U = The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.

OAKWOOD, IL

Well ID	Well Type	Event	Date	Parameter Result		Unit
10	Background	E002	09/19/2023	Antimony, total	0.0013 U	mg/L
10	Background	E002	09/19/2023	Arsenic, total	0.00100 J+	mg/L
10	Background	E002	09/19/2023	Barium, total	0.0690	mg/L
10	Background	E002	09/19/2023	Beryllium, total	0.00053 U	mg/L
10	Background	E002	09/19/2023	Boron, total	0.05 UJ	mg/L
10	Background	E002	09/19/2023	Cadmium, total	0.00017 U	mg/L
10	Background	E002	09/19/2023	Calcium, total	160	mg/L
10	Background	E002	09/19/2023	Chloride, total	4.60	mg/L
10	Background	E002	09/19/2023	Chromium, total	0.0011 U	mg/L
10	Background	E002	09/19/2023	Cobalt, total	0.0130 J	mg/L
10	Background	E002	09/19/2023	Dissolved Oxygen	2.96	mg/L
10	Background	E002	09/19/2023	Fluoride, total	0.19 J	mg/L
10	Background	E002	09/19/2023	Lead, total	0.00019 U	mg/L
10	Background	E002	09/19/2023	Lithium, total	0.0140	mg/L
10	Background	E002	09/19/2023	Mercury, total	0.000079 U	mg/L
10	Background	E002	09/19/2023	Molybdenum, total	0.0025 U	mg/L
10	Background	E002	09/19/2023	Oxidation Reduction Potential	196	mV
10	Background	E002	09/19/2023	pH (field)	6.9	SU
10	Background	E002	09/19/2023	Selenium, total	0.00098 U	mg/L
10	Background	E002	09/19/2023	Specific Conductance @ 25C (field)	1,387	micromhos/cm
10	Background	E002	09/19/2023	Sulfate, total	230	mg/L
10	Background	E002	09/19/2023	Temperature	16.5	degrees C
10	Background	E002	09/19/2023	Thallium, total	0.00057 U	mg/L
10	Background	E002	09/19/2023	Total Dissolved Solids	890	mg/L
10	Background	E002	09/19/2023	Turbidity, field	43.8	NTU
22	Background	E002	09/19/2023	Antimony, total	0.0013 U	mg/L
22	Background	E002	09/19/2023	Arsenic, total 0.001 UJ		mg/L
22	Background	E002	09/19/2023	Barium, total	0.0740	mg/L
22	Background	E002	09/19/2023	Beryllium, total	0.00053 U	mg/L
22	Background	E002	09/19/2023	Boron, total	0.390	mg/L
22	Background	E002	09/19/2023	Cadmium, total	0.00017 U	mg/L
22	Background	E002	09/19/2023	Calcium, total	39.0 J-	mg/L
22	Background	E002	09/19/2023	Chloride, total	16.0	mg/L
22	Background	E002	09/19/2023	Chromium, total	0.0011 U	mg/L
22	Background	E002	09/19/2023	Cobalt, total	0.0004 U	mg/L
22	Background	E002	09/19/2023	Dissolved Oxygen	0.830	mg/L
22	Background	E002	09/19/2023	Fluoride, total	0.45 J	mg/L
22	Background	E002	09/19/2023	Lead, total	0.00019 U	mg/L
22	Background	E002	09/19/2023	Lithium, total	0.0350	mg/L
22	Background	E002	09/19/2023	Mercury, total	0.00016 U	mg/L
22	Background	E002	09/19/2023	Molybdenum, total	0.0025 U	mg/L
22	Background	E002	09/19/2023	Oxidation Reduction Potential	-10.7	mV
22	Background	E002	09/19/2023	pH (field)	7.4	SU
22	Background	E002	09/19/2023	Selenium, total	0.00098 U	mg/L
22	Background	E002	09/19/2023	Specific Conductance @ 25C (field)	0.0700	micromhos/cm
22	Background	E002	09/19/2023	23 Sulfate, total 33.0		mg/L

Dara"

RAMBOLL

OAKWOOD, IL

Well ID	Well Type	Event	Date	Parameter	Result	Unit
22	Background	E002	09/19/2023	Temperature	13.9	degrees C
22	Background	E002	09/19/2023	Thallium, total	0.00057 U	mg/L
22	Background	E002	09/19/2023	Total Dissolved Solids	470	mg/L
22	Background	E002	09/19/2023	Turbidity, field	0	NTU
16A	Compliance	E002	09/21/2023	Antimony, total	0.0013 U	mg/L
16A	Compliance	E002	09/21/2023	Arsenic, total	0.00130 J+	mg/L
16A	Compliance	E002	09/21/2023	Barium, total	0.300	mg/L
16A	Compliance	E002	09/21/2023	Beryllium, total	0.00053 U	mg/L
16A	Compliance	E002	09/21/2023	Boron, total	0.760	mg/L
16A	Compliance	E002	09/21/2023	Cadmium, total	0.00017 U	mg/L
16A	Compliance	E002	09/21/2023	Calcium, total	35.0	mg/L
16A	Compliance	E002	09/21/2023	Chloride, total	130	mg/L
16A	Compliance	E002	09/21/2023	Chromium, total	0.0011 U	mg/L
16A	Compliance	E002	09/21/2023	Cobalt, total	0.0004 U	mg/L
16A	Compliance	E002	09/21/2023	Dissolved Oxygen	9.21	mg/L
16A	Compliance	E002	09/21/2023	Fluoride, total	0.82 J	mg/L
16A	Compliance	E002	09/21/2023	Lead, total	0.0005 UJ	mg/L
16A	Compliance	E002	09/21/2023	Lithium, total	0.0290	mg/L
16A	Compliance	E002	09/21/2023	Mercury, total	0.000079 U	mg/L
16A	Compliance	E002	09/21/2023	Molybdenum, total	0.0025 U	mg/L
16A	Compliance	E002	09/21/2023	Oxidation Reduction Potential	110	mV
16A	Compliance	E002	09/21/2023	pH (field) 6.7		SU
16A	Compliance	E002	09/21/2023	Selenium, total 0.00098 L		mg/L
16A	Compliance	E002	09/21/2023	Specific Conductance @ 25C (field) 0.002		micromhos/cm
16A	Compliance	E002	09/21/2023	Sulfate, total 9.40		mg/L
16A	Compliance	E002	09/21/2023	Temperature 21.6		degrees C
16A	Compliance	E002	09/21/2023	Thallium, total	Thallium, total 0.00057 U	
16A	Compliance	E002	09/21/2023	Total Dissolved Solids	660	mg/L
16A	Compliance	E002	09/21/2023	Turbidity, field	4.61	NTU
35D	Compliance	E002	09/22/2023	Antimony, total	0.0013 U	mg/L
35D	Compliance	E002	09/22/2023	Arsenic, total	0.00510	mg/L
35D	Compliance	E002	09/22/2023	Barium, total	0.0280	mg/L
35D	Compliance	E002	09/22/2023	Beryllium, total	0.00053 U	mg/L
35D	Compliance	E002	09/22/2023	Boron, total	1.80	mg/L
35D	Compliance	E002	09/22/2023	Cadmium, total	0.00017 U	mg/L
35D	Compliance	E002	09/22/2023	Calcium, total	96.0	mg/L
35D	Compliance	E002	09/22/2023	Chloride, total	460	mg/L
35D	Compliance	E002	09/22/2023	Chromium, total	0.0011 U	mg/L
35D	Compliance	E002	09/22/2023	Cobalt, total	0.00043 J	mg/L
35D	Compliance	E002	09/22/2023	Dissolved Oxygen	0.0800	mg/L
35D	Compliance	E002	09/22/2023	Fluoride, total	0.82 J	mg/L
35D	Compliance	E002	09/22/2023	Lead, total	0.000850 J+	mg/L
35D	Compliance	E002	09/22/2023	Lithium, total	0.120	mg/L
35D	Compliance	E002	09/22/2023	Mercury, total	0.000079 U	mg/L
35D	Compliance	E002	09/22/2023	Molybdenum, total	0.00500	mg/L
35D	Compliance	E002	09/22/2023	Oxidation Reduction Potential	-132	mV

Dara"

OAKWOOD, IL

Well ID	Well Type	Event	Date	Parameter	Result	Unit
35D	Compliance	E002	09/22/2023	pH (field)	7.3	SU
35D	Compliance	E002	09/22/2023	Selenium, total	0.00098 U	mg/L
35D	Compliance	E002	09/22/2023	Specific Conductance @ 25C (field)	4,516	micromhos/cm
35D	Compliance	E002	09/22/2023	Sulfate, total	1,400	mg/L
35D	Compliance	E002	09/22/2023	Temperature	13.7	degrees C
35D	Compliance	E002	09/22/2023	Thallium, total	0.00057 U	mg/L
35D	Compliance	E002	09/22/2023	Total Dissolved Solids	3,700	mg/L
35D	Compliance	E002	09/22/2023	Turbidity, field	3.10	NTU
70S	Compliance	E002	09/19/2023	Antimony, total	0.0013 U	mg/L
70S	Compliance	E002	09/19/2023	Arsenic, total	0.001 UJ	mg/L
70S	Compliance	E002	09/19/2023	Barium, total	0.0160	mg/L
70S	Compliance	E002	09/19/2023	Beryllium, total	0.00053 U	mg/L
70S	Compliance	E002	09/19/2023	Boron, total	0.510	mg/L
70S	Compliance	E002	09/19/2023	Cadmium, total	0.00017 U	mg/L
70S	Compliance	E002	09/19/2023	Calcium, total	210	mg/L
70S	Compliance	E002	09/19/2023	Chloride, total	17.0	mg/L
70S	Compliance	E002	09/19/2023	Chromium, total	0.0011 U	mg/L
70S	Compliance	E002	09/19/2023	Cobalt, total	0.00051 J	mg/L
70S	Compliance	E002	09/19/2023	Dissolved Oxygen	0	mg/L
70S	Compliance	E002	09/19/2023	Fluoride, total	0.29 J	mg/L
70S	Compliance	E002	09/19/2023	Lead, total	0.00019 U	mg/L
70S	Compliance	E002	09/19/2023	Lithium, total	0.0190	mg/L
70S	Compliance	E002	09/19/2023	Mercury, total	0.000079 U	mg/L
70S	Compliance	E002	09/19/2023	Molybdenum, total	0.00500	mg/L
70S	Compliance	E002	09/19/2023	Oxidation Reduction Potential	83.5	mV
70S	Compliance	E002	09/19/2023	pH (field)	7.1	SU
70S	Compliance	E002	09/19/2023	Selenium, total	0.00098 U	mg/L
70S	Compliance	E002	09/19/2023	Specific Conductance @ 25C (field)	1,347	micromhos/cm
70S	Compliance	E002	09/19/2023	Sulfate, total	670	mg/L
70S	Compliance	E002	09/19/2023	Temperature	12.7	degrees C
70S	Compliance	E002	09/19/2023	Thallium, total	0.00057 U	mg/L
70S	Compliance	E002	09/19/2023	Total Dissolved Solids	1,300	mg/L
70S	Compliance	E002	09/19/2023	Turbidity, field	572	NTU
70D	Compliance	E002	09/19/2023	Antimony, total	0.0013 U	mg/L
70D	Compliance	E002	09/19/2023	Arsenic, total	0.001 UJ	mg/L
70D	Compliance	E002	09/19/2023	Barium, total	0.380	mg/L
70D	Compliance	E002	09/19/2023	Beryllium, total	0.00053 U	mg/L
70D	Compliance	E002	09/19/2023	Boron, total	1.40	mg/L
70D	Compliance	E002	09/19/2023	Cadmium, total	0.00017 U	mg/L
70D	Compliance	E002	09/19/2023	Calcium, total	77.0	mg/L
70D	Compliance	E002	09/19/2023	Chloride, total	570	mg/L
70D	Compliance	E002	09/19/2023	Chromium, total	0.0011 J	mg/L
70D	Compliance	E002	09/19/2023	Cobalt, total	0.00100	mg/L
70D	Compliance	E002	09/19/2023	Dissolved Oxygen	0.340	mg/L
70D	Compliance	E002	09/19/2023	Fluoride, total	0.35 J	mg/L
70D	Compliance	E002	09/19/2023	Lead, total	0.0005 UJ	mg/L

Dara"

OAKWOOD, IL

Well ID	Well Type	Event	Date	Parameter	Result	Unit
70D	Compliance	E002	09/19/2023	Lithium, total	0.0950	mg/L
70D	Compliance	E002	09/19/2023	Mercury, total	0.000079 U	mg/L
70D	Compliance	E002	09/19/2023	Molybdenum, total	0.0025 U	mg/L
70D	Compliance	E002	09/19/2023	Oxidation Reduction Potential	63.6	mV
70D	Compliance	E002	09/19/2023	pH (field)	6.9	SU
70D	Compliance	E002	09/19/2023	Selenium, total	0.00098 U	mg/L
70D	Compliance	E002	09/19/2023	Specific Conductance @ 25C (field)	2,539	micromhos/cm
70D	Compliance	E002	09/19/2023	Sulfate, total	46.0	mg/L
70D	Compliance	E002	09/19/2023	Temperature	13.3	degrees C
70D	Compliance	E002	09/19/2023	Thallium, total	0.00057 U	mg/L
70D	Compliance	E002	09/19/2023	Total Dissolved Solids	1,700	mg/L
70D	Compliance	E002	09/19/2023	Turbidity, field	5.48	NTU
71D	Compliance	E002	09/19/2023	Dissolved Oxygen	3.18	mg/L
71D	Compliance	E002	09/19/2023	Oxidation Reduction Potential	140	mV
71D	Compliance	E002	09/19/2023	pH (field)	7.1	SU
71D	Compliance	E002	09/19/2023	Specific Conductance @ 25C (field)	4,021	micromhos/cm
71D	Compliance	E002	09/19/2023	Temperature	21.7	degrees C
71D	Compliance	E002	09/19/2023	Turbidity, field	10.8	NTU

Notes:

C = Celsius

cm = centimeter

mg/L = milligrams per liter

mV = millivolts

NTU = Nephelometric Turbidity Units

pCi/L = picocuries per liter

SU = Standard Units

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. J = The result is an estimated quantity, but the result may be biased low. J + = The result is an estimated quantity, but the result may be biased high.

U = The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.

UJ = The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

TABLE 2.COMPARISON OF STATISTICAL RESULTS TO GWPS - QUARTER 2 2023

845 QUARTERLY REPORT VERMILION POWER PLANT NEW EAST ASH POND

OAKWOOD, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Compliance Result
35D	BCU	E001	Antimony, total	mg/L	04/01/21 - 06/29/23	9	67	CI around median	0.001	0.006	Standard	No Exceedance
35D	BCU	E001	Arsenic, total	mg/L	04/01/21 - 06/29/23	9	11	CI around mean	0.00142	0.010	Standard	No Exceedance
35D	BCU	E001	Barium, total	mg/L	04/01/21 - 06/29/23	9	0	CI around median	0.0261	2.0	Standard	No Exceedance
35D	BCU	E001	Beryllium, total	mg/L	04/01/21 - 06/29/23	9	100	All ND - Last	0.0005	0.004	Standard	No Exceedance
35D	BCU	E001	Boron, total	mg/L	04/01/21 - 06/29/23	9	0	CI around mean	1.52	2	Standard	No Exceedance
35D	BCU	E001	Cadmium, total	mg/L	04/01/21 - 06/29/23	9	100	All ND - Last	0.002	0.005	Standard	No Exceedance
35D	BCU	E001	Chloride, total	mg/L	04/01/21 - 06/29/23	9	0	CI around mean	251	200	Standard	Exceedance
35D	BCU	E001	Chromium, total	mg/L	04/01/21 - 06/29/23	9	67	CI around median	0.0015	0.1	Standard	No Exceedance
35D	BCU	E001	Cobalt, total	mg/L	04/01/21 - 06/29/23	9	22	CI around mean	0.000677	0.0900	Background	No Exceedance
35D	BCU	E001	Fluoride, total	mg/L	04/01/21 - 06/29/23	9	0	CI around mean	0.688	4.0	Standard	No Exceedance
35D	BCU	E001	Lead, total	mg/L	04/01/21 - 06/29/23	9	44	CI around geomean	0.000903	0.0075	Standard	No Exceedance
35D	BCU	E001	Lithium, total	mg/L	04/01/21 - 06/29/23	9	0	CI around mean	0.104	0.04	Standard	Exceedance
35D	BCU	E001	Mercury, total	mg/L	04/01/21 - 06/29/23	9	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
35D	BCU	E001	Molybdenum, total	mg/L	04/01/21 - 06/29/23	9	11	CI around mean	0.0125	0.1	Standard	No Exceedance
35D	BCU	E001	pH (field)	SU	04/01/21 - 06/29/23	13	0	CI around median	7.2/7.7	6.3/9.0	Background/Standard	No Exceedance
35D	BCU	E001	Radium 226 + Radium 228, total	pCi/L	04/01/21 - 06/29/23	9	0	CI around mean	0.28	7.00	Background	No Exceedance
35D	BCU	E001	Selenium, total	mg/L	04/01/21 - 06/29/23	9	100	All ND - Last	0.001	0.05	Standard	No Exceedance
35D	BCU	E001	Sulfate, total	mg/L	04/01/21 - 06/29/23	14	0	CI around mean	1,040	400	Standard	Exceedance
35D	BCU	E001	Thallium, total	mg/L	04/01/21 - 06/29/23	9	100	All ND - Last	0.002	0.002	Standard	No Exceedance
35D	BCU	E001	Total Dissolved Solids	mg/L	04/01/21 - 06/29/23	14	0	CI around mean	2,560	1,200	Standard	Exceedance
70S	UU	E001	Antimony, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.001	0.006	Standard	No Exceedance
70S	UU	E001	Arsenic, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.01	0.010	Standard	No Exceedance
70S	UU	E001	Barium, total	mg/L	04/01/21 - 06/21/23	9	0	CI around mean	0.0163	2.0	Standard	No Exceedance
70S	UU	E001	Beryllium, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.0005	0.004	Standard	No Exceedance
70S	UU	E001	Boron, total	mg/L	04/01/21 - 06/21/23	9	0	CI around mean	0.331	2	Standard	No Exceedance
70S	UU	E001	Cadmium, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.002	0.005	Standard	No Exceedance
70S	UU	E001	Chloride, total	mg/L	04/01/21 - 06/21/23	9	0	CB around linear reg	5.54	200	Standard	No Exceedance

RAMBOLL
TABLE 2.COMPARISON OF STATISTICAL RESULTS TO GWPS - QUARTER 2 2023

845 QUARTERLY REPORT VERMILION POWER PLANT NEW EAST ASH POND OAKWOOD, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Compliance Result
705	UU	E001	Chromium, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.005	0.1	Standard	No Exceedance
70S	UU	E001	Cobalt, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.001	0.0900	Background	No Exceedance
705	UU	E001	Fluoride, total	mg/L	04/01/21 - 06/21/23	9	0	CI around mean	0.139	4.0	Standard	No Exceedance
70S	UU	E001	Lead, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.0075	0.0075	Standard	No Exceedance
70S	UU	E001	Lithium, total	mg/L	04/01/21 - 06/21/23	9	0	CI around mean	0.0116	0.04	Standard	No Exceedance
705	UU	E001	Mercury, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
70S	UU	E001	Molybdenum, total	mg/L	04/01/21 - 06/21/23	9	11	CI around mean	0.00499	0.1	Standard	No Exceedance
70S	UU	E001	pH (field)	SU	04/01/21 - 06/21/23	9	0	CI around mean	6.9/7.0	6.3/9.0	Background/Standard	No Exceedance
70S	UU	E001	Radium 226 + Radium 228, total	pCi/L	04/01/21 - 06/21/23	9	0	CI around geomean	0.0683	7.00	Background	No Exceedance
70S	UU	E001	Selenium, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.001	0.05	Standard	No Exceedance
70S	UU	E001	Sulfate, total	mg/L	04/01/21 - 06/21/23	9	0	CI around mean	587	400	Standard	Exceedance
70S	UU	E001	Thallium, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.002	0.002	Standard	No Exceedance
70S	UU	E001	Total Dissolved Solids	mg/L	04/01/21 - 06/21/23	9	0	CI around mean	1,210	1,200	Standard	Exceedance
70D	BCU	E001	Antimony, total	mg/L	04/01/21 - 06/20/23	9	78	CI around median	0.001	0.006	Standard	No Exceedance
70D	BCU	E001	Arsenic, total	mg/L	04/01/21 - 06/20/23	9	44	CI around mean	0.000424	0.010	Standard	No Exceedance
70D	BCU	E001	Barium, total	mg/L	04/01/21 - 06/20/23	9	0	CI around mean	0.465	2.0	Standard	No Exceedance
70D	BCU	E001	Beryllium, total	mg/L	04/01/21 - 06/20/23	9	67	CI around median	0.001	0.004	Standard	No Exceedance
70D	BCU	E001	Boron, total	mg/L	04/01/21 - 06/20/23	9	0	CI around mean	1.05	2	Standard	No Exceedance
70D	BCU	E001	Cadmium, total	mg/L	04/01/21 - 06/20/23	9	100	All ND - Last	0.002	0.005	Standard	No Exceedance
70D	BCU	E001	Chloride, total	mg/L	04/01/21 - 06/20/23	9	0	CI around mean	492	200	Standard	Exceedance
70D	BCU	E001	Chromium, total	mg/L	04/01/21 - 06/20/23	9	11	CI around mean	-0.00202	0.1	Standard	No Exceedance
70D	BCU	E001	Cobalt, total	mg/L	04/01/21 - 06/20/23	9	11	CI around mean	-0.00324	0.0900	Background	No Exceedance
70D	BCU	E001	Fluoride, total	mg/L	04/01/21 - 06/20/23	9	0	CB around linear reg	-0.0206	4.0	Standard	No Exceedance
70D	BCU	E001	Lead, total	mg/L	04/01/21 - 06/20/23	9	11	CI around mean	-0.00239	0.0075	Standard	No Exceedance
70D	BCU	E001	Lithium, total	mg/L	04/01/21 - 06/20/23	9	0	CI around mean	0.0661	0.04	Standard	Exceedance
70D	BCU	E001	Mercury, total	mg/L	04/01/21 - 06/20/23	9	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
70D	BCU	E001	Molybdenum, total	mg/L	04/01/21 - 06/20/23	9	11	CB around linear reg	-0.0508	0.1	Standard	No Exceedance

RAMBOLL

TABLE 2.COMPARISON OF STATISTICAL RESULTS TO GWPS - QUARTER 2 2023

845 QUARTERLY REPORT VERMILION POWER PLANT NEW EAST ASH POND

OAKWOOD, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Compliance Result
70D	BCU	E001	pH (field)	SU	04/01/21 - 06/20/23	9	0	CB around linear reg	5.9/7.5	6.3/9.0	Background/Standard	No Exceedance
70D	BCU	E001	Radium 226 + Radium 228, total	pCi/L	04/01/21 - 06/20/23	9	0	CI around mean	0.928	7.00	Background	No Exceedance
70D	BCU	E001	Selenium, total	mg/L	04/01/21 - 06/20/23	9	78	CI around median	0.001	0.05	Standard	No Exceedance
70D	BCU	E001	Sulfate, total	mg/L	04/01/21 - 06/20/23	9	0	CI around mean	48	400	Standard	No Exceedance
70D	BCU	E001	Thallium, total	mg/L	04/01/21 - 06/20/23	9	100	All ND - Last	0.002	0.002	Standard	No Exceedance
70D	BCU	E001	Total Dissolved Solids	mg/L	04/01/21 - 06/20/23	9	0	CB around linear reg	469	1,200	Standard	No Exceedance
71D	BCU	E001	Antimony, total	mg/L	04/01/21 - 06/20/23	5	60	CI around median (Last Sample, n<7)	0.001	0.006	Standard	No Exceedance
71D	BCU	E001	Arsenic, total	mg/L	04/01/21 - 06/20/23	5	40	CI around mean	-0.00633	0.010	Standard	No Exceedance
71D	BCU	E001	Barium, total	mg/L	04/01/21 - 06/20/23	5	0	CI around mean	0.0634	2.0	Standard	No Exceedance
71D	BCU	E001	Beryllium, total	mg/L	04/01/21 - 06/20/23	5	80	CI around median (Last Sample, n<7)	0.0005	0.004	Standard	No Exceedance
71D	BCU	E001	Boron, total	mg/L	04/01/21 - 06/20/23	5	0	CI around mean	0.487	2	Standard	No Exceedance
71D	BCU	E001	Cadmium, total	mg/L	04/01/21 - 06/20/23	5	100	All ND - Last	0.002	0.005	Standard	No Exceedance
71D	BCU	E001	Chloride, total	mg/L	04/01/21 - 06/20/23	5	0	CI around mean	124	200	Standard	No Exceedance
71D	BCU	E001	Chromium, total	mg/L	04/01/21 - 06/20/23	5	20	CI around geomean	0.000681	0.1	Standard	No Exceedance
71D	BCU	E001	Cobalt, total	mg/L	04/01/21 - 06/20/23	5	20	CI around geomean	0.000372	0.0900	Background	No Exceedance
71D	BCU	E001	Fluoride, total	mg/L	04/01/21 - 06/20/23	5	0	CI around mean	0.427	4.0	Standard	No Exceedance
71D	BCU	E001	Lead, total	mg/L	04/01/21 - 06/20/23	5	20	CI around geomean	0.000428	0.0075	Standard	No Exceedance
71D	BCU	E001	Lithium, total	mg/L	04/01/21 - 06/20/23	5	0	CI around mean	0.0156	0.04	Standard	No Exceedance
71D	BCU	E001	Mercury, total	mg/L	04/01/21 - 06/20/23	5	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
71D	BCU	E001	Molybdenum, total	mg/L	04/01/21 - 06/20/23	5	20	CI around mean	0.00646	0.1	Standard	No Exceedance
71D	BCU	E001	pH (field)	SU	04/01/21 - 06/20/23	4	0	CI around mean	6.4/7.9	6.3/9.0	Background/Standard	No Exceedance
71D	BCU	E001	Radium 226 + Radium 228, total	pCi/L	04/01/21 - 06/20/23	5	0	CI around mean	-0.807	7.00	Background	No Exceedance
71D	BCU	E001	Selenium, total	mg/L	04/01/21 - 06/20/23	5	80	CI around median (Last Sample, n<7)	0.001	0.05	Standard	No Exceedance
71D	BCU	E001	Sulfate, total	mg/L	04/01/21 - 06/20/23	5	0	CI around mean	34.8	400	Standard	No Exceedance
71D	BCU	E001	Thallium, total	mg/L	04/01/21 - 06/20/23	5	100	All ND - Last	0.002	0.002	Standard	No Exceedance
71D	BCU	E001	Total Dissolved Solids	mg/L	04/01/21 - 06/20/23	5	0	CI around mean	639	1,200	Standard	No Exceedance

RAMBOLL

TABLE 2.COMPARISON OF STATISTICAL RESULTS TO GWPS - QUARTER 2 2023845 QUARTERLY REPORTVERMILION POWER PLANTNEW EAST ASH PONDOAKWOOD, IL

Notes:

Compliance Result:

No Exceedance: the statistical result did not exceed the GWPS.

Exceedance: The statistical result exceeded the GWPS.

HSU = hydrostratigraphic unit:

BCU = Bedrock Confining Unit

UU = Upper Unit

mg/L = milligrams per liter

ND = non-detect

pCi/L = picocuries per liter

SU = standard units

Sample Count = number of samples from Sampled Date Range used to calculate the Statistical Result Statistical Calculation = method used to calculate the statistical result:

All ND - Last = All results were below the reporting limit, and the last determined reporting limit is shown

CB around linear reg = Confidence band around linear regression

CI around geomean = Confidence interval around the geometric mean

CI around mean = Confidence interval around the mean

CI around median = Confidence interval around the median

Statistical Result = calculated in accordance with the Statistical Analysis Plan using constituent concentrations observed at each monitoring well during all sampling events within the specified date range For pH, the values presented are the lower / upper limits GWPS = Groundwater Protection Standard

GWPS Source:

Standard = standard specified in 35 I.A.C. § 845.600(a)(1)

Background = background concentration (see cover page for additional information)

TABLE 2. COMPARISON OF STATISTICAL RESULTS TO GWPS - QUARTER 3, 2023

845 QUARTERLY REPORT VERMILION POWER PLANT NEW EAST ASH POND

OAKWOOD, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Compliance Result
16A	BCU	E002	Antimony, total	mg/L	04/01/21 - 09/21/23	9	89	CI around median	0.001	0.006	Standard	No Exceedance
16A	BCU	E002	Arsenic, total	mg/L	04/01/21 - 09/21/23	9	0	CI around mean	0.000978	0.010	Standard	No Exceedance
16A	BCU	E002	Barium, total	mg/L	04/01/21 - 09/21/23	9	0	CI around mean	0.24	2.0	Standard	No Exceedance
16A	BCU	E002	Beryllium, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.001	0.004	Standard	No Exceedance
16A	BCU	E002	Boron, total	mg/L	04/01/21 - 09/21/23	9	0	CI around mean	0.678	2	Standard	No Exceedance
16A	BCU	E002	Cadmium, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.0005	0.005	Standard	No Exceedance
16A	BCU	E002	Chloride, total	mg/L	04/01/21 - 09/21/23	9	0	CI around mean	121	200	Standard	No Exceedance
16A	BCU	E002	Chromium, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.005	0.1	Standard	No Exceedance
16A	BCU	E002	Cobalt, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.001	0.0900	Background	No Exceedance
16A	BCU	E002	Fluoride, total	mg/L	04/01/21 - 09/21/23	9	11	CI around mean	0.628	4.0	Standard	No Exceedance
16A	BCU	E002	Lead, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.0005	0.0075	Standard	No Exceedance
16A	BCU	E002	Lithium, total	mg/L	04/01/21 - 09/21/23	9	0	CI around mean	0.0291	0.04	Standard	No Exceedance
16A	BCU	E002	Mercury, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
16A	BCU	E002	Molybdenum, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.005	0.1	Standard	No Exceedance
16A	BCU	E002	pH (field)	SU	04/01/21 - 09/21/23	14	0	CI around median	7.2/7.4	6.3/9.0	Background/Standard	No Exceedance
16A	BCU	E002	Selenium, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.0025	0.05	Standard	No Exceedance
16A	BCU	E002	Sulfate, total	mg/L	04/01/21 - 09/21/23	14	5	CI around mean	14.5	400	Standard	No Exceedance
16A	BCU	E002	Thallium, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.002	0.002	Standard	No Exceedance
16A	BCU	E002	Total Dissolved Solids	mg/L	04/01/21 - 09/21/23	14	0	CI around mean	640	1,200	Standard	No Exceedance
35D	BCU	E002	Antimony, total	mg/L	04/01/21 - 09/22/23	10	70	CI around median	0.001	0.006	Standard	No Exceedance
35D	BCU	E002	Arsenic, total	mg/L	04/01/21 - 09/22/23	10	10	CI around mean	0.0016	0.010	Standard	No Exceedance
35D	BCU	E002	Barium, total	mg/L	04/01/21 - 09/22/23	10	0	CI around median	0.0261	2.0	Standard	No Exceedance
35D	BCU	E002	Beryllium, total	mg/L	04/01/21 - 09/22/23	10	100	All ND - Last	0.001	0.004	Standard	No Exceedance
35D	BCU	E002	Boron, total	mg/L	04/01/21 - 09/22/23	10	0	CI around mean	1.55	2	Standard	No Exceedance
35D	BCU	E002	Cadmium, total	mg/L	04/01/21 - 09/22/23	10	100	All ND - Last	0.0005	0.005	Standard	No Exceedance
35D	BCU	E002	Chloride, total	mg/L	04/01/21 - 09/22/23	10	0	CI around mean	271	200	Standard	Exceedance
35D	BCU	E002	Chromium, total	mg/L	04/01/21 - 09/22/23	10	70	CI around median	0.0015	0.1	Standard	No Exceedance

RAMBOLL

TABLE 2. COMPARISON OF STATISTICAL RESULTS TO GWPS - QUARTER 3, 2023

845 QUARTERLY REPORT VERMILION POWER PLANT

NEW EAST ASH POND OAKWOOD, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Compliance Result
35D	BCU	E002	Cobalt, total	mg/L	04/01/21 - 09/22/23	10	30	CI around geomean	0.000904	0.0900	Background	No Exceedance
35D	BCU	E002	Fluoride, total	mg/L	04/01/21 - 09/22/23	10	10	CI around median	0.65	4.0	Standard	No Exceedance
35D	BCU	E002	Lead, total	mg/L	04/01/21 - 09/22/23	10	40	CI around geomean	0.000801	0.0075	Standard	No Exceedance
35D	BCU	E002	Lithium, total	mg/L	04/01/21 - 09/22/23	10	0	CI around mean	0.107	0.04	Standard	Exceedance
35D	BCU	E002	Mercury, total	mg/L	04/01/21 - 09/22/23	10	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
35D	BCU	E002	Molybdenum, total	mg/L	04/01/21 - 09/22/23	10	10	CI around mean	0.0107	0.1	Standard	No Exceedance
35D	BCU	E002	pH (field)	SU	04/01/21 - 09/22/23	14	0	CI around median	7.2/7.7	6.3/9.0	Background/Standard	No Exceedance
35D	BCU	E002	Selenium, total	mg/L	04/01/21 - 09/22/23	10	100	All ND - Last	0.0025	0.05	Standard	No Exceedance
35D	BCU	E002	Sulfate, total	mg/L	04/01/21 - 09/22/23	15	0	CI around mean	1,060	400	Standard	Exceedance
35D	BCU	E002	Thallium, total	mg/L	04/01/21 - 09/22/23	10	100	All ND - Last	0.002	0.002	Standard	No Exceedance
35D	BCU	E002	Total Dissolved Solids	mg/L	04/01/21 - 09/22/23	15	0	CI around mean	2,610	1,200	Standard	Exceedance
70S	UU	E002	Antimony, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.003	0.006	Standard	No Exceedance
70S	UU	E002	Arsenic, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.001	0.010	Standard	No Exceedance
70S	UU	E002	Barium, total	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	0.0162	2.0	Standard	No Exceedance
70S	UU	E002	Beryllium, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.001	0.004	Standard	No Exceedance
70S	UU	E002	Boron, total	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	0.347	2	Standard	No Exceedance
70S	UU	E002	Cadmium, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.0005	0.005	Standard	No Exceedance
70S	UU	E002	Chloride, total	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	13.4	200	Standard	No Exceedance
70S	UU	E002	Chromium, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.005	0.1	Standard	No Exceedance
70S	UU	E002	Cobalt, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.001	0.0900	Background	No Exceedance
70S	UU	E002	Fluoride, total	mg/L	04/01/21 - 09/19/23	10	10	CB around T-S line	0.14	4.0	Standard	No Exceedance
70S	UU	E002	Lead, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.0005	0.0075	Standard	No Exceedance
70S	UU	E002	Lithium, total	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	0.0116	0.04	Standard	No Exceedance
70S	UU	E002	Mercury, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
70S	UU	E002	Molybdenum, total	mg/L	04/01/21 - 09/19/23	10	10	CI around mean	0.00499	0.1	Standard	No Exceedance
70S	UU	E002	pH (field)	SU	04/01/21 - 09/19/23	10	0	CI around mean	6.9/7.0	6.3/9.0	Background/Standard	No Exceedance
70S	UU	E002	Selenium, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.0025	0.05	Standard	No Exceedance

RAMBOLL

TABLE 2. COMPARISON OF STATISTICAL RESULTS TO GWPS - QUARTER 3, 2023

845 QUARTERLY REPORT VERMILION POWER PLANT NEW EAST ASH POND

OAKWOOD, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Compliance Result
705	UU	E002	Sulfate, total	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	598	400	Standard	Exceedance
70S	UU	E002	Thallium, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.002	0.002	Standard	No Exceedance
70S	UU	E002	Total Dissolved Solids	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	1,220	1,200	Standard	Exceedance
70D	BCU	E002	Antimony, total	mg/L	04/01/21 - 09/19/23	10	80	CI around median	0.001	0.006	Standard	No Exceedance
70D	BCU	E002	Arsenic, total	mg/L	04/01/21 - 09/19/23	10	50	CI around mean	0.000443	0.010	Standard	No Exceedance
70D	BCU	E002	Barium, total	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	0.445	2.0	Standard	No Exceedance
70D	BCU	E002	Beryllium, total	mg/L	04/01/21 - 09/19/23	10	70	CI around median	0.001	0.004	Standard	No Exceedance
70D	BCU	E002	Boron, total	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	1.09	2	Standard	No Exceedance
70D	BCU	E002	Cadmium, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.0005	0.005	Standard	No Exceedance
70D	BCU	E002	Chloride, total	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	503	200	Standard	Exceedance
70D	BCU	E002	Chromium, total	mg/L	04/01/21 - 09/19/23	10	20	CI around geomean	0.00352	0.1	Standard	No Exceedance
70D	BCU	E002	Cobalt, total	mg/L	04/01/21 - 09/19/23	10	10	CI around geomean	0.00161	0.0900	Background	No Exceedance
70D	BCU	E002	Fluoride, total	mg/L	04/01/21 - 09/19/23	10	10	CI around mean	0.399	4.0	Standard	No Exceedance
70D	BCU	E002	Lead, total	mg/L	04/01/21 - 09/19/23	10	20	CI around geomean	0.00144	0.0075	Standard	No Exceedance
70D	BCU	E002	Lithium, total	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	0.0698	0.04	Standard	Exceedance
70D	BCU	E002	Mercury, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
70D	BCU	E002	Molybdenum, total	mg/L	04/01/21 - 09/19/23	10	20	CB around linear reg	-0.031	0.1	Standard	No Exceedance
70D	BCU	E002	pH (field)	SU	04/01/21 - 09/19/23	10	0	CB around linear reg	6.2/7.4	6.3/9.0	Background/Standard	No Exceedance
70D	BCU	E002	Selenium, total	mg/L	04/01/21 - 09/19/23	10	80	CI around median	0.001	0.05	Standard	No Exceedance
70D	BCU	E002	Sulfate, total	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	47.5	400	Standard	No Exceedance
70D	BCU	E002	Thallium, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.002	0.002	Standard	No Exceedance
70D	BCU	E002	Total Dissolved Solids	mg/L	04/01/21 - 09/19/23	10	0	CB around linear reg	871	1,200	Standard	No Exceedance
71D	BCU	E002	pH (field)	SU	04/01/21 - 09/19/23	5	0	CI around mean	6.7/7.6	6.3/9.0	Background/Standard	No Exceedance

TABLE 2.COMPARISON OF STATISTICAL RESULTS TO GWPS - QUARTER 3, 2023845 QUARTERLY REPORTVERMILION POWER PLANTNEW EAST ASH PONDOAKWOOD, IL

Notes:

Compliance Result:

No Exceedance: the statistical result did not exceed the GWPS.

Exceedance: The statistical result exceeded the GWPS.

HSU = hydrostratigraphic unit:

BCU = Bedrock Confining Unit

UU = Upper Unit

mg/L = milligrams per liter

ND = non-detect

pCi/L = picocuries per liter

SU = standard units

Sample Count = number of samples from Sampled Date Range used to calculate the Statistical Result Statistical Calculation = method used to calculate the statistical result:

All ND - Last = All results were below the reporting limit, and the last determined reporting limit is shown

CB around T-S line = Confidence band around Thiel-Sen line

CB around linear reg = Confidence band around linear regression

CI around geomean = Confidence interval around the geometric mean

CI around mean = Confidence interval around the mean

CI around median = Confidence interval around the median

Statistical Result = calculated in accordance with the Statistical Analysis Plan using constituent concentrations observed at each monitoring well during all sampling events within the specified date range For pH, the values presented are the lower / upper limits GWPS = Groundwater Protection Standard

GWPS Source:

Standard = standard specified in 35 I.A.C. § 845.600(a)(1)

Background = background concentration (see cover page for additional information)

FIGURES

FIGURE 1

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT NEW EAST ASH POND VERMILION POWER PLANT OAKWOOD, ILLINOIS

LOCATION MAP

COMPLIANCE WELL BACKGROUND WELL

SOURCE SAMPLE LOCATION

REGULATED UNIT (SUBJECT UNIT)

SITE FEATURE

PROPERTY BOUNDARY

FIGURE 2

OAKWOOD, ILLINOIS

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT **NEW EAST ASH POND** VERMILION POWER PLANT

GWPS EXCEEDANCE MAP UPPER UNIT QUARTERS 2-3, 2023

TOTAL DISSOLVED SOLIDS EXCEEDANCE

• COMPLIANCE WELL WITHOUT EXCEEDANCE

- REGULATED UNIT (SUBJECT UNIT)
- SITE FEATURE

PROPERTY BOUNDARY

TOTAL LITHIUM EXCEEDANCE

TOTAL SULFATE EXCEEDANCE

TOTAL DISSOLVED SOLIDS EXCEEDANCE

• COMPLIANCE WELL WITHOUT EXCEEDANCE

- REGULATED UNIT (SUBJECT UNIT)
- SITE FEATURE

PROPERTY BOUNDARY

GWPS EXCEEDANCE MAP BEDROCK CONFINING UNIT QUARTERS 2-3, 2023

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT NEW EAST ASH POND VERMILION POWER PLANT OAKWOOD, ILLINOIS

FIGURE 3

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

FIGURE 4

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT **NEW EAST ASH POND** VERMILION POWER PLANT OAKWOOD, ILLINOIS

POTENTIOMETRIC SURFACE MAP MAY 19, 2023

 ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.
ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88). 150 300

0 ____ Feet

NOTES:

GROUNDWATER ELEVATION CONTOUR (10-FT CONTOUR INTERVAL, NAVD88) - - - INFERRED GROUNDWATER ELEVATION CONTOUR GROUNDWATER FLOW DIRECTION REGULATED UNIT (SUBJECT UNIT) SITE FEATURE

FIGURE 5

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT **NEW EAST ASH POND** VERMILION POWER PLANT OAKWOOD, ILLINOIS

POTENTIOMETRIC SURFACE MAP JUNE 19, 2023

___ Feet

SAMPLING EVENT. 3. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 150 300 0

INITIATION OF DEPTH TO GROUNDWATER MEASUREMENTS BUT WITHIN THE SAME

2. ELEVATIONS IN BRACKETS WERE OBTAINED OUTSIDE OF THE 24 HOUR PERIOD FROM

NOTES: 1. ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.

- - - INFERRED GROUNDWATER ELEVATION CONTOUR GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION CONTOUR (10-FT CONTOUR INTERVAL, NAVD88)

REGULATED UNIT (SUBJECT UNIT)

COMPLIANCE MONITORING WELL BACKGROUND MONITORING WELL

PORE WATER WELL MONITORING WELL

SITE FEATURE

PROPERTY BOUNDARY

FIGURE 6

AND CORRECTIVE ACTION REPORT **NEW EAST ASH POND** VERMILION POWER PLANT OAKWOOD, ILLINOIS

2023 ANNUAL GROUNDWATER MONITORING

POTENTIOMETRIC SURFACE MAP JULY 19, 2023

USED FOR CONTOURING. 2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88).

300

150

0

NOTES:

1. ELEVATIONS IN PARENTHESES WERE NOT

- - - INFERRED GROUNDWATER ELEVATION CONTOUR GROUNDWATER FLOW DIRECTION REGULATED UNIT (SUBJECT UNIT)

GROUNDWATER ELEVATION CONTOUR (10-FT CONTOUR INTERVAL, NAVD88)

COMPLIANCE MONITORING WELL BACKGROUND MONITORING WELL

SITE FEATURE

PORE WATER WELL HONITORING WELL

PROPERTY BOUNDARY

FIGURE 7

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT **NEW EAST ASH POND** VERMILION POWER PLANT OAKWOOD, ILLINOIS

POTENTIOMETRIC SURFACE MAP AUGUST 19, 2023

(NAVD88). 150 300 0 ____ Feet 1

1. ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING. 2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988

NOTES:

REGULATED UNIT (SUBJECT UNIT)
SITE FEATURE
PROPERTY BOUNDARY

GROUNDWATER ELEVATION CONTOUR (10-FT CONTOUR INTERVAL, NAVD88)

- - - INFERRED GROUNDWATER ELEVATION CONTOUR

COMPLIANCE MONITORING WELL BACKGROUND MONITORING WELL

PORE WATER WELL MONITORING WELL

BACKGROUND MONITORING WELL

PORE WATER WELL

HONITORING WELL

GROUNDWATER ELEVATION CONTOUR (5-FT CONTOUR INTERVAL, NAVD88)

- - - INFERRED GROUNDWATER ELEVATION CONTOUR

GROUNDWATER FLOW DIRECTION

REGULATED UNIT (SUBJECT UNIT)

SITE FEATURE

PROPERTY BOUNDARY

0 150 300

POTENTIOMETRIC SURFACE MAP SEPTEMBER 18, 2023

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT NEW EAST ASH POND VERMILION POWER PLANT OAKWOOD, ILLINOIS

FIGURE 8

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

RAMBOLL

FIGURE 9

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT **NEW EAST ASH POND** VERMILION POWER PLANT OAKWOOD, ILLINOIS

OCTOBER 26, 2023

POTENTIOMETRIC SURFACE MAP

(NAVD88).

300

150

1

0

1. ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.
2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988

NOTES:

GROUNDWATER FLOW REGULATED UNIT (SUBJECT

PORE WATER WELL HONITORING WELL

COMPLIANCE MONITORING BACKGROUND MONITORING

GROUNDWATER ELEVATION CONTOUR (10-FT CONTOUR INTERVAL, NAVD88)

- - - INFERRED GROUNDWATER ELEVATION

SITE FEATURE

PROPERTY

FIGURE 10

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT **NEW EAST ASH POND** VERMILION POWER PLANT OAKWOOD, ILLINOIS

NOVEMBER 27, 2023

POTENTIOMETRIC SURFACE MAP

1. ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING. 2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88).

300

- Feet

150

0

NOTES:

₽	MONITORING WELL
	GROUNDWATER EL

PORE WATER WELL

GROUNDWATER ELEVATION CONTOUR (10-FT CONTOUR INTERVAL, NAVD88)

- - - INFERRED GROUNDWATER ELEVATION CONTOUR

GROUNDWATER FLOW DIRECTION

COMPLIANCE MONITORING WELL BACKGROUND MONITORING WELL

REGULATED UNIT (SUBJECT UNIT)

SITE FEATURE

PROPERTY BOUNDARY

FIGURE 11

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT **NEW EAST ASH POND** VERMILION POWER PLANT OAKWOOD, ILLINOIS

DECEMBER 14, 2023

POTENTIOMETRIC SURFACE MAP

(NAVD88). 150 300

NOTES: 1. ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.
2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988

GROUNDWATER ELEVATION CONTOUR (10-FT CONTOUR INTERVAL, NAVD88) - - - INFERRED GROUNDWATER ELEVATION GROUNDWATER FLOW

PORE WATER WELL HONITORING WELL

COMPLIANCE MONITORING BACKGROUND MONITORING

REGULATED UNIT (SUBJECT

SITE FEATURE

PROPERTY

0

. .

ATTACHMENTS

ATTACHMENT A GROUNDWATER ELEVATION DATA

ATTACHMENT A GROUNDWATER ELEVATION DATA

2023 35 I.A.C. § 845 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT VERMILION POWER PLANT NEW EAST ASH POND

OAKWOOD, IL

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
10	Background	UCU	06/20/2023	[48.57]	[610.52]
10	Background	UCU	09/18/2023	50.58	608.51
10	Background	UCU	10/26/2023	51.42	607.67
10	Background	UCU	11/27/2023	51.31	607.78
10	Background	UCU	12/14/2023	52.00	607.09
16B	Compliance	UU	06/19/2023	Dry	Dry
16B	Compliance	UU	09/18/2023	Dry	Dry
16B	Compliance	UU	11/27/2023	Dry	Dry
16A	Compliance	BCU	09/18/2023	9.40	570.92
16A	Compliance	BCU	10/26/2023	9.67	570.65
16A	Compliance	BCU	11/27/2023	10.60	569.72
16A	Compliance	BCU	12/14/2023	11.22	569.10
22	Background	BCU	05/19/2023	53.83	604.78
22	Background	BCU	06/19/2023	54.20	604.41
22	Background	BCU	07/19/2023	54.57	604.04
22	Background	BCU	08/19/2023	55.47	603.15
22	Background	BCU	09/18/2023	56.51	602.11
22	Background	BCU	10/26/2023	56.81	601.81
22	Background	BCU	11/27/2023	56.62	602.00
22	Background	BCU	12/14/2023	56.69	601.93
35S	Compliance	UU	06/29/2023	[Dry]	[Dry]
35S	Compliance	UU	11/27/2023	Dry	Dry
35D	Compliance	BCU	05/19/2023	12.37	571.77
35D	Compliance	BCU	06/19/2023	12.80	571.33
35D	Compliance	BCU	07/19/2023	13.54	570.59
35D	Compliance	BCU	08/19/2023	11.36	572.77
35D	Compliance	BCU	09/18/2023	11.51	572.63
35D	Compliance	BCU	10/26/2023	17.01	567.13
35D	Compliance	BCU	11/27/2023	11.02	573.12
35D	Compliance	BCU	12/14/2023	17.19	566.95
70S	Compliance	UU	05/19/2023	10.77	582.96
70S	Compliance	UU	06/19/2023	13.83	579.90
70S	Compliance	UU	07/19/2023	14.85	578.88
70S	Compliance	UU	08/19/2023	15.08	578.65
70S	Compliance	UU	09/18/2023	15.97	577.77
70S	Compliance	UU	11/27/2023	15.60	578.14
70S	Compliance	UU	12/14/2023	15.30	578.44
70D	Compliance	BCU	05/19/2023	44.67	549.84
70D	Compliance	BCU	06/19/2023	37.37	557.14
70D	Compliance	BCU	07/19/2023	41.16	553.35
70D	Compliance	BCU	08/19/2023	35.15	559.36
70D	Compliance	BCU	09/18/2023	30.25	564.27
70D	Compliance	BCU	11/27/2023	40.25	554.27
70D	Compliance	BCU	12/14/2023	40.02	554.50
71S	Compliance	UU	06/19/2023	Dry	Dry
71S	Compliance	UU	09/18/2023	12.72	566.84

Dara"

RAMBOLL

ATTACHMENT A GROUNDWATER ELEVATION DATA

2023 35 I.A.C. § 845 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT VERMILION POWER PLANT NEW EAST ASH POND

OAKWOOD, IL

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
71S	Compliance	UU	10/26/2023	16.20	563.36
71S	Compliance	UU	11/27/2023	12.45	567.11
71S	Compliance	UU	12/14/2023	12.16	567.40
71D	Compliance	BCU	05/19/2023	38.19	541.69
71D	Compliance	BCU	06/19/2023	37.20	542.68
71D	Compliance	BCU	07/19/2023	39.71	540.17
71D	Compliance	BCU	08/19/2023	38.26	541.62
71D	Compliance	BCU	09/18/2023	37.70	542.19
71D	Compliance	BCU	11/27/2023	39.73	540.16
71D	Compliance	BCU	12/14/2023	41.87	538.02
NED1	Water Level	CCR	09/18/2023	4.75	595.32
NED1	Water Level	CCR	10/26/2023	5.21	594.86
NED1	Water Level	CCR	11/27/2023	4.82	595.25
NED1	Water Level	CCR	12/14/2023	4.44	595.63

Notes:

Due to malfunctioning pressure transducer, data gaps exist in monthly water level elevations prior to the fourth quarter. Monthly depth to water measurements were collected manually in the fourth quarter.

BMP = below measuring point

Bracketing [] indicates that the measurement was obtained outside of the episodic depth to groundwater measurements time frame. NAVD88 = North American Vertical Datum of 1988

Monitored Unit Abbreviations:

BCU = bedrock confining unit

CCR = coal combustion residuals

UCU = upper confining unit

UU = upper unit

Generated 2024-01-24 17:39:12.019476 by banoffra

ATTACHMENT B ALTERNATIVE SOURCE DEMONSTRATION AND IEPA DENIAL LETTER

Intended for Dynegy Midwest Generation, LLC

Date December 1, 2023

Project No. 1940103649-014

35 I.A.C. § 845.650(E): ALTERNATIVE SOURCE DEMONSTRATION NEW EAST ASH POND VERMILION POWER PLANT OAKWOOD, ILLINOIS IEPA ID: W183800002-04

CERTIFICATIONS

I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used other than for its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tla¢hac Qualified Professional Engineer 062-063091 Illinois Ramboll Americas Engineering Solutions, Inc. Date: December 1, 2023

I, Brian G. Hennings, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used other than for its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Brian G. Hennings Professional Geologist 196-001482 Illinois Ramboll Americas Engineering Solutions, Inc. Date: December 1, 2023

CONTENTS

1.	Introduction	5
2.	Background	6
2.1	Site Location and Description	6
2.2	Description of New East Ash Pond CCR Unit	6
2.3	Geology and Hydrogeology	6
2.3.1	Site Hydrogeology	6
2.3.2	Regional Bedrock Geology	7
2.4	Groundwater and NEAP Monitoring	7
3.	Lines of Evidence that Potential Groundwater Protection	
	Standard Exceedances are not Related to the NEAP	8
3.1	LOE #1: The Ionic Composition of Bedrock Groundwater is	
	Different Than the Ionic Composition of Porewater and Consistent	
	with Published Observations for Pennsylvanian Bedrock	9
3.2	LOE #2: Concentrations of Chloride in the NEAP Porewater are	
	Lower than Those Observed in the Groundwater	10
3.3	LOE #3: A Bedrock Solids and Geochemical Evaluation Identified	
	Naturally Occurring Shales as the Source of Lithium and Chloride	
	Exceedances at 35D and 70D	11
3.4	LOE #4: A Bedrock Solids and Geochemical Evaluation Identified	
	Naturally Occurring Coal Seams as the Source of the Sulfate	
	Exceedance at 35D Due to Regional Upward Vertical Hydraulic	
	Gradients in the Shale Bedrock	12
3.5	LOE #5: Isotopic Analysis of Groundwater from the Bedrock and	
	Overlying Quaternary Deposits Indicate that Bedrock Groundwater	
	is Between 13,000 and 35,000 years Older Than Groundwater in	
	the Quaternary Deposits; and, Bedrock Groundwater is Isolated	
	from the Groundwater in the Quaternary Deposits	12
4.	Conclusions	15
5.	References	16

TABLES (IN TEXT)

Table A	Isotopic Data from ISGS Sampled Wells (Table 11 from ISGS 2022)
Table B	Summary of Bedrock Well Screen Elevations and Lithology

FIGURES (IN TEXT)

Figure A	Contribution of each major ion to TDS at wells 35D and 70D
Figure B	Piper Diagram
Figure C	Chloride Box Plot

FIGURES (ATTACHED)

Figure 1	Potentiometric Surface Map – June 19, 2023
Figure 2	Monitoring Well Location Map with Results of Carbon-14 Age Dating

APPENDICES

Appendix AGeosyntec Consultants, 2023. Technical Memorandum: Evaluation of Alternative
Sources within Aquifer Solids, Vermilion Power Plant – New East Ash Pond. October 26,
2023.

ACRONYMS AND ABBREVIATIONS

35 I.A.C.	Title 35 of the Illinois Administrative Code
ASD	Alternative Source Demonstration
BCU	Bedrock Confining Unit
CCR	coal combustion residuals
DMG	Dynegy Midwest Generation, LLC
E001	Event 1
EPRI	Electric Power Research Institute
GMP	Groundwater Monitoring Plan
GWPS	groundwater protection standard
HCR	Hydrogeologic Site Characterization Report
ISGS	Illinois State Geological Survey
IQR	interquartile range
LOE(s)	line(s) of evidence
mg/L	milligrams per liter
Middle Fork	Middle Fork of the Vermilion River
NAVD88	North American Vertical Datum of 1988
NEAP	New East Ash Pond
PCA	principal component analysis
Ramboll	Ramboll Americas Engineering Solutions, Inc.
SEP	sequential extraction procedure
SI	surface impoundment
SSL	statistically significant level
TDS	total dissolved solids
TU	tritium units
UCU	Upper Confining Unit
UU	Upper Unit
VPP	Vermilion Power Plant

1. INTRODUCTION

Under Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845.650(e), within 60 days from the date of determination of an exceedance of a groundwater protection standard (GWPS) for constituents listed in 35 I.A.C. § 845.600, an owner or operator of a coal combustion residuals (CCR) surface impoundment (SI) may complete a written demonstration that a source other than the CCR SI caused the contamination and the CCR SI did not contribute to the contamination, or that the exceedance of the GWPS resulted from error in sampling, analysis, statistical evaluation, natural variation in groundwater quality, or a change in the potentiometric surface and groundwater flow direction (Alternative Source Demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Midwest Generation, LLC (DMG) by Ramboll Americas Engineering Solutions, Inc (Ramboll), to provide pertinent information pursuant to 35 I.A.C. § 845.650(e) for the Vermilion Power Plant (VPP) New East Ash Pond (NEAP) (*i.e.*, Site) located near Oakwood, Illinois.

The most recent quarterly sampling event (Event 1 [E001]) was completed on June 29, 2023, and analytical data were received on August 3, 2023. In accordance with 35 I.A.C. § 845.610(b)(3)(C), comparison of statistically derived values with the GWPSs described in 35 I.A.C. § 845.600 to determine exceedances of the GWPS was completed by October 2, 2023, within 60 days of receipt of the analytical data (Ramboll, 2023). The statistical comparison identified the following GWPS exceedances at compliance groundwater monitoring wells:

- Chloride at wells 35D and 70D
- Lithium at wells 35D and 70D
- Sulfate at wells 35D and 70S
- Total dissolved solids (TDS) at wells 35D and 70S

Pursuant to 35 I.A.C. § 845.650(e), the lines of evidence (LOE) presented in **Section 3** demonstrate that <u>sources other than the NEAP are the cause of the chloride, lithium, sulfate, and</u> <u>TDS GWPS exceedances at **wells 35D and 70D** listed above and the NEAP has not contributed to the exceedances.</u>

This ASD was completed by December 1, 2023, within 60 days of determination of the exceedances (October 2, 2023), as required by 35 I.A.C. § 845.650(e). This ASD has been completed in conformance with guidance provided in the Electric Power Research Institute (EPRI) guidance for development of ASDs at CCR sites (EPRI, 2017), and the United States Environmental Protection Agency (USEPA)'s Solid Waste Disposal Facility Criteria: Technical Manual (USEPA, 1993).

Sulfate and TDS GWPS exceedances at **well 70S** will be addressed in accordance with 35 I.A.C. § 845.660.

2. BACKGROUND

2.1 Site Location and Description

The former VPP is located four miles northeast of the Village of Oakwood in Vermilion County. The NEAP lies in the bottomlands of the Middle Fork of the Vermilion River (Middle Fork) and is bordered to the west by bluffs, to the south by unimproved DMG land, and to the north and east by the Middle Fork. Several underground coal mines and one surface mine were historically operated both beneath the NEAP and in the vicinity of the VPP.

2.2 Description of New East Ash Pond CCR Unit

The NEAP is a 29-acre inactive, unlined CCR SI constructed overtop a thick shale formation using berms constructed with a low-permeability clay core and cutoff walls keyed into the underlying shale formation.

The original East Ash Pond (1989 pond footprint) was constructed in 1989 and expanded in 2002 to form the present-day NEAP. The 1989 pond footprint was built overtop a thick shale formation which is greater than 80 feet thick in the vicinity of the ash ponds. The earthen berms on the north, east, and south sides of the 1989 pond footprint were constructed with a low-permeability clay core and cutoff walls keyed into the underlying shale formation. The cutoff walls extended approximately 8 feet into the underlying shale. A natural earthen bluff composed of low-permeability native clays formed the west side of the 1989 pond footprint.

New berms were constructed to expand the capacity of the 1989 pond footprint in 2002, forming the footprint of the present-day NEAP. The new berms raised the height of the original berms and were constructed with clay liners keyed into the underlying clay core. A cutoff trench backfilled with low permeability fill was placed along the western side slope of the enlarged NEAP. The low-permeability materials surrounding the footprint of the present-day NEAP form the existing containment system. The secondary pond was not expanded or modified as part of the 2002 NEAP expansion. The VPP ceased operations in 2011 when the power plant was retired.

2.3 Geology and Hydrogeology

2.3.1 Site Hydrogeology

Significant site investigation has been completed at the VPP to fully characterize the geology, hydrogeology, and groundwater quality as provided in the October 2021 operating permit application (Geosyntec, 2021), the January 2022 construction permit application (Geosyntec, 2022), and the Hydrogeologic Site Characterization Report (HCR; Ramboll, 2021a). These materials are incorporated herein. A site conceptual model has been developed and is discussed below.

In addition to the CCRs present in the NEAP, there are three different types of unlithified material present above the bedrock, which were categorized into hydrostratigraphic units in this report as follows:

• **Upper Unit (UU):** includes mixed Quaternary alluvial deposits of the Cahokia Alluvium described as sand with occasional layers of silty clay. The alluvial sand is generally a fine to medium sand that contains silts, clays, and gravels in varying amounts. This unit is present outside of the NEAP and in the bottomlands of the Middle Fork.

- **Upper Confining Unit (UCU):** consists of predominantly low permeability silty and clayey diamictons (glacial till) of the Wedron Formation with intermittent sand layers and lenses. This unit is present outside of the NEAP and along the western bluff of the Middle Fork.
- **Bedrock Confining Unit (BCU):** lowermost unit identified at the site and underlies all unlithified deposits. This unit occurs within Pennsylvanian shale which is the uppermost lithified unit at the Site.

None of the hydrostratigraphic units described above have been identified as an aquifer. However, the Upper Unit and BCU have been identified as potential migration pathways (PMPs).

Groundwater flow direction and gradients toward the Middle Fork have not changed significantly since the hydrogeologic study of the NEAP was completed in 2003 (Ramboll, 2021a; Kelron, 2003), and recent data supports the existing conceptual site model. A bedrock potentiometric surface map for June 19, 2023, is presented in **Figure 1**.

2.3.2 Regional Bedrock Geology

Regional investigations of the Illinois Basin have identified bedrock (specifically brines within the bedrock formations) as a source of chloride in groundwater (Kelley et al, 2012; Panno et al, 2018). Studies by Cartwright (1970) and Siegel (1989) indicate that groundwater migrates toward the center of the Illinois Basin and discharges upward through overlying confining units. The "Saline groundwater and brines can be brought near or to the land surface by natural conditions, such as migrating up prominent fractures and/or faults in bedrock, or by anthropogenic activities, such as exploration for and exploitation of petroleum. The mixing of upward-migrating saline groundwater with fresh groundwater from shallow aquifers can make groundwater from private wells undrinkable and can present a very expensive problem for municipalities (Panno and Hackley, 2010). Illinois State Geological Survey reporting includes 31 chloride results from available water samples (including some samples from VPP) which range from 2.1 to 30,269 milligrams per liter (mg/L) with mean value of 1,689 mg/L and median of 13 mg/L (Illinois State Geological Survey [ISGS] 2002). The report also concludes that water from the wells completed in shale contained higher concentrations of aluminum, barium, bromide, boron, chloride, fluoride, iron, lithium, potassium, sodium, and strontium. Tritium and carbon-14 age dating has demonstrated that groundwater from the bedrock is significantly older than that from the shallow Quaternary deposits (Kelron, 2003; ISGS, 2002).

2.4 Groundwater and NEAP Monitoring

The monitoring system for the NEAP was established in the Groundwater Monitoring Plan (GMP; Ramboll, 2021b) and consists of monitoring wells installed in the UU, UCU, and BCU, including background monitoring wells 10 and 22, located west of the NEAP, and compliance monitoring wells 16A, 16B, 35S, 35D, 70S, 70D, 71S and 71D (**Figure 1**). NED1 (installed in CCR) is used to collect porewater samples and monitor water levels within the NEAP.

3. LINES OF EVIDENCE THAT POTENTIAL GROUNDWATER PROTECTION STANDARD EXCEEDANCES ARE NOT RELATED TO THE NEAP

As allowed by 35 I.A.C. § 845.650(e), this ASD demonstrates that sources other than the NEAP (the CCR unit) caused the exceedances at 35D (chloride, lithium, sulfate, and TDS) and 70D (chloride and lithium) and the NEAP did not contribute to the exceedances. Specifically, the following LOEs conclude that the chloride and lithium exceedances at 35D and 70D are due to groundwater interactions with the bedrock, and that the sulfate exceedance at 35D is due to influence from historic coal mining activities. LOEs supporting this ASD include the following:

- 1. The ionic composition of bedrock groundwater is different than the ionic composition of porewater and consistent with published observations for Pennsylvanian Bedrock.
- 2. Concentrations of chloride in the NEAP porewater are lower than those observed in the groundwater.
- 3. A bedrock solids and geochemical evaluation identified naturally occurring shales as the source of lithium and chloride exceedances at 35D and 70D.
- 4. A bedrock solids and geochemical evaluation identified naturally occurring coal seams as the source of the sulfate exceedance at 35D due to regional upward vertical hydraulic gradients in the shale bedrock.
- 5. Isotopic analysis of groundwater from the bedrock and overlying Quaternary deposits indicate that bedrock groundwater is between 13,000 and 35,000 years older than groundwater in the Quaternary deposits; and bedrock groundwater is isolated from the groundwater in the quaternary deposits.

These LOEs are described and supported in greater detail below.

Since the major contributors to TDS are chloride and sulfate at 70D and 35D (respectively), the LOEs that apply to chloride and sulfate also apply to TDS. **Figure A** (on the following page) shows boxplots summarizing the relative contribution of each major ion to TDS in groundwater from wells 35D and 70D since 2021. Box plots graphically represent the range of a given dataset using lines to construct a box where the lower line, midline, and upper line of the box represent the values of the first quartile, median, and third quartile values, respectively. The minimum and maximum values of the dataset (excluding outliers) are illustrated by whisker lines extending beyond the first and third quartiles of (*i.e.*, below and above) the box plot. The interquartile range (IQR) is the distance between the first and third quartiles. Outliers (values that are at least 1.5 times the IQR away from the edges of the box) are represented by single points plotted outside of the range of the whiskers. **Figure A** shows that chloride has the greatest contribution to TDS concentrations at 70D (median of 42 percent) and sulfate has the greatest contribution to TDS at 35D (median of 42 percent).

3.1 LOE #1: The Ionic Composition of Bedrock Groundwater is Different Than the Ionic Composition of Porewater and Consistent with Published Observations for Pennsylvanian Bedrock

Piper diagrams graphically represent ionic composition of aqueous solutions. A Piper diagram displays the position of water samples with respect to their major cation and anion content on the two lower triangular portions of the diagram, providing the information which, when combined on the central, diamond-shaped portion of the diagram, identify composition categories or groupings (hydrochemical facies). **Figure B** below is a Piper diagram that displays the ionic composition of samples collected from the bedrock background and bedrock compliance wells associated with the NEAP (sampled June 20 and 29, 2023), and porewater sampling location associated with the NEAP (sampled August 17, 2021).

Figure B. Piper Diagram. Shows ionic composition of samples of bedrock groundwater (collected June 20 and 29, 2023) and porewater associated with the NEAP (collected on August 17, 2021).

It is evident from the piper diagram (**Figure B**) that porewater from the NEAP (green symbol) is primarily in the calcium-sulfate hydrochemical facies, while the bedrock groundwater samples (blue symbols) are in the sodium-chloride hydrochemical facies. The background BCU sample (brown symbol) is in the sodium-bicarbonate hydrochemical facies. The background BCU sample is collected from well 22, which is screened at from 556 to 576 feet North American Vertical Datum 1988 (NAVD88), and wells 35D and 70D are screened at lower elevations (536 to 546 feet NAVD88 and 541 to 551 feet NAVD88, respectively). Groundwater from deeper in Pennsylvanian aquifers tends to be more dominant in chloride, and groundwater may change from a sodium-bicarbonate to a sodium-chloride facies over small changes in depth (Lloyd and Lyke 1995). Therefore, compliance groundwater samples have a different ionic composition than porewater and a composition relative to background that is consistent with expected changes due to screen depth, indicating that NEAP porewater is not the source of CCR constituents detected in wells 35D or 70D.

3.2 LOE #2: Concentrations of Chloride in the NEAP Porewater are Lower than Those Observed in the Groundwater

A box plot of chloride concentrations in compliance monitoring wells 35D and 70D and porewater well NED1 is provided in **Figure C** on the following page. Chloride concentrations are lower in

NEAP porewater samples¹ collected during 2021 than in compliance groundwater samples collected from wells 35D and 70D from 2021 to 2023. The maximum concentration of chloride detected in NEAP porewater (44 mg/L) is lower than the minimum concentration of chloride in 35D (199 mg/L) or 70D (317 mg/L). In addition, median concentrations of chloride in wells 35D and 70D are 15 and 27 times greater, respectively, than the median chloride of 25 mg/L in NEAP porewater. Therefore, the NEAP cannot be the source of the elevated chloride concentrations observed in 35D and 70D.

Figure C. Chloride Box Plot. The sample size (n), maximum, median, and minimum values are noted.

3.3 LOE #3: A Bedrock Solids and Geochemical Evaluation Identified Naturally Occurring Shales as the Source of Lithium and Chloride Exceedances at 35D and 70D

Appendix A presents the results of additional analysis performed in 2023 by Geosyntec. Their evaluation of site-specific solid phase compositions and geochemical conditions, multivariate statistical analyses, and literature review of Pennsylvanian-aged shale bedrock groundwaters identified naturally occurring lithium and chloride associated with shales as the alternative source of these constituents to the groundwater at 35D and 70D based on the following observations:

¹ CCR porewater most accurately represents the mobile constituents associated with the waste management activity within the CCR SI (EPRI, 2017). The composition of CCR porewater accumulated at the base of the CCR unit, which is derived from, and represents contact with, CCR material above and around the well screen, is the truest representation of mobile constituents throughout the CCR SI.
- Sequential extraction procedure (SEP) analyses demonstrated that much of the lithium in the solid phase is associated with the fractions which correlate to primary minerals such as micas and clay minerals, as well as the fractions associated with sulfides and oxide minerals.
- Geochemical conditions in the groundwater support desorption or dissolution of the sulfide and iron oxide mineral phases that host lithium.
- X-ray diffraction confirmed the presence of abundant micas and clay minerals, which host native lithium, in the shale bedrock.
- Groundwater chloride concentrations observed in Pennsylvanian-age shale bedrock aquifers are comparable to or higher than those observed at wells 35D and 70D.
- Principal component analysis (PCA) shows that BCU well groundwater is distinct from CCR porewater.

3.4 LOE #4: A Bedrock Solids and Geochemical Evaluation Identified Naturally Occurring Coal Seams as the Source of the Sulfate Exceedance at 35D Due to Regional Upward Vertical Hydraulic Gradients in the Shale Bedrock

Appendix A presents an evaluation of the geochemistry at 35D in the context of previously reported site conditions. This data demonstrates that elevated sulfate concentrations at 35D are the result of influence from a major coal seam in the bedrock based on the following observations:

- The coal seam mined near the site has been previously characterized and contains both iron sulfide minerals and siderite (FeCO3), which is evidence of rapid oxidation of the iron sulfide minerals.
- The groundwater chemistry at 35D suggests that siderite and the iron oxide mineral ferrihydrite are in a state of dynamic equilibrium, consistent with weathering of pyrite to siderite to ferrihydrite.
- Oxidation of sulfide minerals releases sulfate to the groundwater.
- Strong upward groundwater hydraulic gradients are present within the bedrock that provide hydraulic connection between the coal seam the bedrock that well 35D is screened.

3.5 LOE #5: Isotopic Analysis of Groundwater from the Bedrock and Overlying Quaternary Deposits Indicate that Bedrock Groundwater is Between 13,000 and 35,000 years Older Than Groundwater in the Quaternary Deposits; and, Bedrock Groundwater is Isolated from the Groundwater in the Quaternary Deposits

In 2002 ISGS and Dynegy collected groundwater samples from 8 monitoring wells and tested the samples for carbon-14 and hydrogen-3 (tritium) (ISGS, 2002). Six of the monitoring wells (25, 26, 27, 28, 29, and 30) were located adjacent to the NEAP (**Figure 2**). Wells 26 and 28 had well screens that intersected Quaternary deposits of the UU and the remaining wells were screened in shallow shale bedrock. Results of the testing are presented in Table 11 of the ISGS report included below as **Table A** and on **Figure 2**.

Parameter	Units	Well Number							
		1349	25531	KELRON 25	KELRON 26	KELRON 27	KELRON 28	RELRON 29	KELRON 30
¹⁴ C	RYBP	2,180	21,160	13,920	210	19,400	modern	34,610	20,850
	% modern carbon	76	7.2	18	97	8.9	102	1.4	7.5
Tritium	TU	7.8	< 0.43	< 0.43	5.3	< 0.43	5.8	< 0.52	< 0.43

Table A. Isotopic Data from ISGS Sampled Wells (Table 11 from ISGS, 2002)

Table 11. Isotopic data for ISGS sampled wells

¹⁴C = carbon-14 RYBP = Radiocarbon Years Before Present

TU = tritium units

Tritium is generated in the atmosphere and decays in the isolated subsurface. Water with tritium concentrations greater than 5 tritium units (TU) is considered to be recent, while water with nondetectable tritium concentrations is considered to be greater than 50 years old (ISGS, 2002). Groundwater collected from shallow Quaternary deposits is recent (TU>5), while groundwater from the shallow bedrock is older (no tritium detected). The tritium results are consistent with the carbon-14 results, which indicate that the shallow bedrock wells contain an inorganic carbon signature substantially older than that from wells screened in the Quaternary deposits. Groundwater collected from wells screened in shallow bedrock in the vicinity of the NEAP (wells 25, 27, 29, and 30) had estimated ages ranging from 13,920 to 34,610 years based on carbon-14 age dating. This is in contrast to groundwater collected from wells 26 and 28 (screened in the Quaternary deposits) which had estimated ages of less than 210 years. These results indicated to ISGS that the wells that "draw water from the bedrock are either only slightly connected to or completely isolated from the local groundwater flow system [overlying Quaternary deposits]".

In addition to the spatial location of the wells tested for carbon-14 and tritium relative to the NEAP, the elevations of the well screens and lithology of the age dated wells overlap with the well screen elevations and lithology of wells 35D and 70D which contain the GWPS exceedances (**Table B**) with the exception of MW30, which is screened at a lower elevation than all of the other wells.

Well ID	Screen Elevation (feet NAVD88)	Lithology
MW35D – exceedance well	546 to 536	shale bedrock
MW70D – exceedance well	550 to 540	shale bedrock
MW25	560 to 540	shale bedrock
MW27	557 to 537	shale bedrock
MW29	558 to 538	shale bedrock
MW30	519 to 499	shale bedrock

Table B. Summary of Bedrock Well Screen Elevations and Lithology

This data demonstrates that bedrock groundwater in the vicinity of the NEAP is isolated from the overlying Quaternary deposits and the NEAP is not the source of exceedances to the GWPS in bedrock compliance wells 35D and 70D.

4. CONCLUSIONS

Based on these five LOEs, it has been demonstrated that the NEAP is not the source of the chloride, lithium, sulfate, and TDS GWPS exceedances in wells 35D and 70D and has not contributed to exceedances identified during the first quarterly sampling event. The chloride and lithium exceedances are due to groundwater interactions with the bedrock, and the sulfate exceedance is due to influence from historic coal mining activities. Because the major contributors to TDS are chloride and sulfate, LOEs that apply to chloride and sulfate also apply to TDS.

- 1. The ionic composition of bedrock groundwater is different than the ionic composition of porewater and consistent with published observations for Pennsylvanian Bedrock.
- 2. Concentrations of chloride in the NEAP porewater are lower than those observed in the groundwater.
- 3. A bedrock solids and geochemical evaluation identified naturally occurring shales as the source of lithium and chloride exceedances at 35D and 70D.
- 4. A bedrock solids and geochemical evaluation identified naturally occurring coal seams as the source of the sulfate exceedance at 35D due to regional upward vertical hydraulic gradients in the shale bedrock.
- 5. Isotopic analysis of groundwater from the bedrock and overlying Quaternary deposits indicate that bedrock groundwater is between 13,000 and 35,000 years older than groundwater in the Quaternary deposits; and, bedrock groundwater is isolated from the groundwater in the quaternary deposits.

This information serves as the written ASD prepared in accordance with 35 I.A.C. § 845.650(e), demonstrating that the chloride, lithium, sulfate, and TDS exceedances observed at wells 35D and 70D during the first quarterly sampling event were not due to the NEAP and are attributable to natural groundwater interactions with bedrock and historic coal mining. Therefore, assessment of corrective measures is not required for these constituents at the NEAP.

5. REFERENCES

Cartwright, K., 1970. Groundwater discharge in the Illinois Basin as suggested by temperature anomalies. Water Resources Research 6, No. 3: 912-918.

Electric Power Research Institute (EPRI), 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. EPRI, Palo Alto, CA. 3002010920.

Geosyntec Consultants (Geosyntec), 2021. Initial Operating Permit Application, Vermilion Power Plant, New East Ash Pond, Oakwood Illinois, October 2021.

Geosyntec Consultants (Geosyntec), 2022. Construction Permit Application, Vermilion Power Plant, New East Ash Pond, Oakwood Illinois, January 2022.

Geosyntec Consultants (Geosyntec), 2023. Technical Memorandum: Evaluation of Alternative Sources within Aquifer Solids, Vermilion Power Plant – New East Ash Pond. October 26, 2023.

Illinois Administrative Code, Title 35, Subtitle G, Chapter I, Subchapter J, Part 845: Standards for The Disposal Of Coal Combustion Residuals In Surface Impoundments, effective April 21, 2021.

Illinois State Geological Survey (ISGS), 2002. *The Geochemistry of Groundwater from the Shallow Bedrock in Central Vermilion County, Illinois.* Open-File Series Report 2002-4.

Kelley, Walton R., Samuel V. Panno, and Keith Hackley, 2012. The Sources, Distribution, and Trends of Chloride in the Waters of Illinois. Prairie Research Institute. University of Illinois at Urbana-Champaign. March 2012.

Kelron Environmental (Kelron), 2003. *Regional and Local Hydrogeology and Geochemistry, Vermilion Power Plant, Illinois*. Dynegy Midwest Generation, LLC, November 2003.

Lloyd, O. B., and W. L. Lyke, 1995. Ground Water Atlas of the United States – Illinois, Indiana, Kentucky, Ohio, Tennessee. HA-730K. United States Geological Survey.

Panno, S.V., and K.C. Hackley, 2010. Geologic influences on water quality. In *Geology of Illinois*, ed. D.R. Kolata and C.K. Nimz, 337-350. Champaign, Illinois: Illinois State Geological Survey.

Panno, S.V., Askari, Z., Kelly, W.R., Parris, T.M. and Hackley, K.C., 2018. Recharge and Groundwater Flow Within an Intracratonic Basin, Midwestern United States. Groundwater, 56: 32-45.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021a. *Hydrogeologic Site Characterization Report, New East Ash Pond, Vermilion Power Plant, Oakwood, Illinois*. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021b. *Groundwater Monitoring Plan, New East Ash Pond, Vermilion Power Plant, Oakwood, Illinois.* October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021c. *History of Potential Exceedances, New East Ash Pond, Vermilion Power Plant, Oakwood, Illinois.* October 25, 2021. Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021d. *Hydrogeologic Site Characterization Report, North Ash Pond and Old East Ash Pond, Vermilion Power Plant, Oakwood, Illinois*. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2023. *35 I.A.C. § 845.610(B)(3)(D) Groundwater Monitoring Data and Detected Exceedances: Quarter 2, 2023. New East Ash Pond (NEAP), Vermilion Power Plant, Oakwood, Illinois.* October 2, 2023.

Siegel, D.I., 1989. Geochemistry of the Cambrian-Ordovician Aquifer System in the Northern Midwest, U.S. Geological Survey Professional Paper 1405-D, 76p.

United States Environmental Protection Agency (USEPA), 1993. Solid Waste Disposal Facility Criteria: Technical Manual EPA530-R-93-017. Solid Waste and Emergency Response (5305). November 1993.

FIGURES

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

FIGURE 1

ALTERNATIVE SOURCE DEMONSTRATION **NEW EAST ASH POND** VERMILION POWER PLANT OAKWOOD, ILLINOIS

JUNE 19, 2023

0	150	300
		Feet

POTENTIOMETRIC SURFACE MAP

0	150	300
		Feet

INITIATION OF DEPTH TO GROUNDWATER MEASUREMENTS BUT WITHIN THE SAME SAMPLING EVENT. 3. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988

2. ELEVATIONS IN BRACKETS WERE OBTAINED OUTSIDE OF THE 24 HOUR PERIOD FROM

USED FOR CONTOURING.

NOTES: 1. ELEVATIONS IN PARENTHESES WERE NOT

GROUNDWATER ELEVATION CONTOUR (10-FT CONTOUR INTERVAL, NAVD88) - - - INFERRED GROUNDWATER ELEVATION CONTOUR

COMPLIANCE MONITORING WELL BACKGROUND MONITORING WELL

GROUNDWATER FLOW DIRECTION

REGULATED UNIT (SUBJECT UNIT)

SITE FEATURE

PORE WATER WELL MONITORING WELL

PROPERTY BOUNDARY

North	
nd Monitoring Vell Locations nd Geochemistry Vilion Power Plant Dakwood, Illinois	

W

MONITORING WELL LOCATION MAP WITH RESULTS OF CARBON-14 AGE DATING

ALTERNATIVE SOURCE DEMONSTRATION **NEW EAST ASH POND** VERMILION POWER PLANT OAKWOOD, ILLINOIS

FIGURE 2

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

APPENDICES

APPENDIX A GEOSYNTEC CONSULTANTS, 2023. TECHNICAL MEMORANDUM: EVALUATION OF ALTERNATIVE SOURCES WITHIN AQUIFER SOLIDS, VERMILION POWER PLANT -NEW EAST ASH POND. OCTOBER 26, 2023.

TECHNICAL MEMORANDUM

Date:	November 30, 2023
To:	Brian Voelker, Dynegy Midwest Generation, LLC
Copies to:	Stu Cravens and Phil Morris, Dynegy Midwest Generation, LLC Eric Tlachac and Brian Hennings, Ramboll
From:	Allison Kreinberg and Ryan Fimmen, PhD, Geosyntec Consultants
Subject:	Evaluation of Alternative Sources within Bedrock Solids Vermilion Power Plant – New East Ash Pond

This document serves as an Appendix to the December 1, 2023, Alternative Source Demonstration (ASD) for the Vermilion Power Plant New East Ash Pond (NEAP) (Site) for the Quarter 2 2023 sampling event completed to fulfill the requirements of Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845.650(e) (VER NEAP E001 ASD). A previous Evaluation of Potential Groundwater Protection Standard (GWPS) Exceedances prepared by Ramboll Americas Engineering Solutions, Inc. (Ramboll) in January 2022 concluded that the potential GWPS exceedances of chloride, lithium, and total dissolved solids (TDS) at downgradient monitoring wells 35D and 70D could be attributed to sources other than the NEAP (Ramboll 2022). Geosyntec Consultants, Inc. (Geosyntec) has completed a review of geochemical and site conditions at the Site to evaluate the influence of the solid-phase mineralogy and geochemistry of the bedrock confining unit potential migration pathway ("bedrock") on groundwater composition. Using additional evidence from laboratory analyses and statistical evaluations, this technical memorandum demonstrates that naturally occurring lithium and chloride associated with bedrock underlying the Site is a source of lithium, chloride, and total dissolved solids (TDS) to Site groundwater. Additionally, this memorandum provides evidence that sulfate concentrations at well 35D can be attributed to the weathering of sulfur-bearing minerals within the coal seams in the Site lithology.

SITE CONDITIONS

Site geology consists primarily of unlithified alluvial and glacial deposits overlying shale bedrock that contains a major coal seam mined in the region. The alluvial deposits consist of the Cahokia Alluvium composed primarily of sand with occasional layers of silty clay and the Upper Till Unit (Wedron Formation and Glasford Formation Till) consisting of clay and silty clay with occasional sand lenses. The Cahokia Alluvium comprises the Upper Unit (UU) at the NEAP and is generally 10 to 25 feet thick. Below this unit is the Upper Confining Unit (UCU) that is comprised of the lower permeability Wedron and Glasford Formations. The UCU is of variable thickness, ranging from up to 100 feet west of the NEAP and absent east of the NEAP (Ramboll 2021).

The Bedrock Confining Unit (BCU), typically greater than 80 feet thick, consists of the Pennsylvanian-age Shelburn Formation, which is primarily a low permeability shale with thin limestone, sandstone, and coal beds. The top of the shale unit in the vicinity of the NEAP is described as highly weathered and decomposed. This unit contains the Danville (No. 7) Coal, which was encountered near the NEAP at approximately 80 to 100 feet below ground surface (ft bgs). Wells 35D and 70D are both screened within the BCU.

Groundwater within the BCU exhibits an upward hydraulic gradient and high dissolved mineral content (Ramboll 2021). Previous isotopic analyses by Kelron Environmental (Kelron) suggest that groundwater in the BCU is significantly older than the recent groundwater in the overlying unlithified deposits by approximately 13,000 to 35,000 radiocarbon years before present (Kelron 2003). Additional information regarding Site hydrogeology and stratigraphy is provided in the ASD prepared by Ramboll.

BEDROCK SOLIDS EVALUATION

Geosyntec reviewed the results of analyses completed on solid phase samples collected from the Site to evaluate if lithium and chloride concentrations in groundwater at wells 35D and 70D in excess of the GWPS could be derived from the native weathered shale bedrock lithology.

Samples were collected from soil borings advanced in June 2023 near two locations: compliance well 35D and compliance well 70D (**Figure 1**). Due to access limitations and health and safety considerations at the Site, the boring locations were adjusted in the field and are approximately 200-250 feet offset from the original well locations. Differences in ground surface elevations and bedrock dip were considered during drilling and sample selection so that the sampled intervals correspond with the well screen interval. Boring locations and well screen intervals are shown in the cross sections provided in **Attachment 2**. The material sampled for geochemical characterization is consistent with the material present in the well screens (gray weathered shale).

The field boring log for these soil borings are provided as **Attachment 2**. Soil boring logs and well construction logs for 35D and 70D are also included in **Attachment 2**. Two samples were collected from the boring near well 35D (VER-35), and three samples were collected from the boring near well 70D (VER-70) at various depths.

All samples were submitted for analysis of mineralogy via X-ray diffraction (XRD), and two samples from VER-35 (55-60 ft bgs and 60-63 ft bgs) and one sample from well VER-70¹ (75-80 ft bgs) were submitted for analyses of total lithium and lithium distribution within the bedrock using sequential extraction procedure (SEP). SEP is an analytical technique that uses progressively stronger reagents to solubilize metals from specific phases within the solid matrix and is used to infer associations between constituents and different classes of solids (Tessier et al. 1979). These classes of solids are identified based on their solubility under different reagents; the reagents are provided in **Attachment 3**. Analysis of chloride by SEP was not performed due to the high solubility of the chloride ion in solution.

Results for total and SEP analyses of lithium in these samples are presented in **Table 1** and the analytical laboratory reports are provided as **Attachment 3**. As a first step to evaluate data quality in an SEP analysis, the sum of individual extraction steps from the SEP was compared to the total lithium concentration. The sum of the SEP procedure is not expected to be exactly equal to the total metals analysis but should generally be consistent with the total metals analysis. The total lithium concentrations ranged from 39 micrograms per gram of material (μ g/g) to 42 μ g/g in the shale samples. The summed concentrations of lithium from the SEP analyses ranged from 45.3 to 50.8 μ g/g. The results were generally consistent between the total metals analyses and the summed SEP steps, indicating good metals recovery and data quality. These results are also consistent with previous samples collected at the Site (31.1-33.3 mg/kg, Ramboll 2021) and within the Danville coal (5.5-89 mg/kg, USGS 2002).

The results presented in **Table 1** demonstrate that lithium is associated with multiple solid phase components. The majority of the lithium was released via leaching steps associated with two reactive solid phase components: metal oxides (between 24 and 28%) and sulfides (between 28 and 31%). Lithium associated with oxides and sulfides may be mobilized via desorption or dissolution of these phases in the event of geochemical changes to the system due to the relative instability of oxide and sulfide minerals.

¹ Two samples from the unlithified units from VER-70 (30-40 ft bgs) and (41-42 ft bgs) are excluded from subsequent results tables and discussion to emphasize findings associated with shale lithologies in support of an assessment of naturally occurring lithium in bedrock.

Eh-pH diagrams were generated using groundwater data for well 35D (Figure 2) and well 70D (Figure 3) to evaluate groundwater conditions at these wells relative to the thermodynamic stability of iron oxide and iron sulfide minerals. As indicated on Figures 2 and 3, groundwater chemistry at both monitoring wells generally favor thermodynamic stability of the iron oxide phase. However, multiple samples from well 35D plot within the three-phase stability boundary between amorphous iron oxide Fe(OH)₃(ppd), the iron carbonate mineral siderite, and aqueous Fe^{2+} (Figure 2), indicating that groundwater at this well is experiencing dynamic equilibrium conditions in which chemical reactions between these phases may occur. Groundwater from well 70D indicates a preference for iron oxide phases (Fe(OH)₃(ppd)), although groundwater chemistry at this well may be trending towards iron carbonate (siderite) stability (Figure 3). Iron sulfide minerals such as pyrite are not predicted to be in a stable phase at either well; therefore, any existing sulfidic minerals within the bedrock would be expected to undergo oxidative dissolution. Lithium associated with the sulfide solid phase component (Table 1) would then become mobilized due to dissolution/desorption processes and resulting in an increase in aqueous lithium in groundwater. Similarly, dissolution of iron oxides would occur under variable equilibrium conditions and result in an increase in aqueous lithium in groundwater.

Notable abundances (31 to 37%) of lithium were also found to be associated with the final extraction of the analysis, which is typically considered to be associated with residual metals which are immobile and not readily soluble. The abundance of lithium within this residual fraction indicates association with inseparable primary mineral phases such as clay minerals (Tessier et al., 1979). Clay minerals are known to be common sorbents for naturally occurring lithium (Starkey 1982). Lithium is known to leach from lithium-hosting igneous rocks and micas through weathering processes. Mineral weathering reactions occurring in micas may result in lithium-rich micas transforming directly to illitic clays, and then to mixed-layer and smectite clays. The lithium within these primary minerals either becomes incorporated directly into the crystal structures of the clay minerals or is transported in water and later concentrated in brines through evaporation (Ronov et al. 1970). Lithium-enriched brines constitute a common origin of lithium in clay minerals, as eroded fine-grained materials (i.e., detrital clays) deposited in these brines are capable of hosting lithium within vacant sites in the octahedral layers comprising part of their crystal structures (Schultz 1969). Field lithologic descriptions of the samples from VER-35 and VER-70 indicate that the samples collected from these two locations consist of weathered shale, which is comprised primarily of mica and clay minerals that are known to be hosts of natural lithium.

Mineralogical analyses were completed using XRD to evaluate whole rock mineralogy and determine the abundance of iron oxide minerals, iron sulfide minerals, clay minerals, and micas within the bedrock solids. Whole rock mineralogy results are provided in **Table 2**. Sample mineralogy consists predominantly of quartz, mica (muscovite), feldspars (albite and microcline),

and clay minerals (illite, chlorite, and kaolinite) (**Table 2**). Of these minerals, muscovite and clays are known hosts of natural lithium within their crystal structures and comprise natural sources of lithium in the system (Zawidzki 1976; Starkey 1982). As indicated in **Table 2**, these minerals are present at large abundances in samples from well 35D and well 70D (between 43.0 to 47.4%), indicating that these lithium-host minerals occur in the BCU and constitute a natural source of aqueous lithium to groundwater.

While iron oxides were not identified via XRD, they are likely present in the system. Amorphous Fe(OH)₃(ppd), which is thermodynamically favored to form at the Eh and pH measured in groundwater (Figures 2 and 3), cannot be identified via XRD due to its lack of crystalline structure. However, the SEP results identified an abundance of iron in the leaching step associated with non-crystalline oxides (step 3; Attachment 3), and iron oxides are often present on clay surfaces due to the relationship between their surface charges (Ohtsubo 1989). As discussed above, the XRD analysis identified the presence of clay minerals within the shale (Table 2, Attachment 4). Thus, weathering reactions involving iron oxides likely constitute an additional natural source of aqueous lithium to groundwater.

As discussed above, the shale bedrock material consists predominantly of micas and clays which are known hosts of lithium within their crystal structures. The weathered nature of the shale bedrock material suggests that chemical weathering processes are likely occurring, the result of which supports the occurrence of weathering reactions involving metal oxide and sulfide minerals, as well as alteration reactions between mica and clay minerals and between different types of clay minerals. These reactions all represent processes by which lithium associated with the native geologic materials may become mobilized, contributing aqueous lithium to groundwater.

Similar to lithium, chloride occurs naturally within shale bedrock, which likely contributes to elevated chloride in groundwater. Because of the high solubility of chloride, it is not feasible to determine phase associations through SEP; however, studies within the region have found that groundwater chloride concentrations comparable to or higher than those observed at wells 35D and 70D are often found within the Pennsylvanian-aged shale bedrock. The mean chloride concentration in Pennsylvanian bedrock aquifers in the area reported by the Illinois State Geological Survey (ISGS) is 1,689 mg/L and a chloride maximum concentration of 30,269 mg/L was reported (ISGS 2002). Chloride concentrations observed in wells 35D and 70D are 251 mg/L and 492 mg/L, respectively. A USGS summary found that water within the upper parts of the Pennsylvanian-aged bedrock is generally similar throughout the Illinois and Indiana basins. This water is influenced by the interaction with the variable interbedded rock types present in the bedrock; it can vary from a sodium bicarbonate to a sodium chloride type within a few feet of change in depth (Lloyd and Lyke 1995).

Furthermore, seeps with high naturally occurring salinity (i.e., brines) are known to occur in southern Illinois. Samples of seeps and shallow wells affected by brine in Illinois had highly variable chloride concentrations ranging from ~100 mg/L up to more than 15,000 mg/L (Panno, et al. 2005). These results suggest that contact with Pennsylvanian-aged bedrock can result in natural variability in the reported chloride concentrations in groundwater at ranges consistent with those observed at the site.

STATISTICAL EVALUATION OF GROUNDWATER COMPOSITION

Advanced statistical analyses were employed to evaluate the similarity or dissimilarity among different groundwater samples or groups based on a broad suite of analytes. Dimensional reduction techniques, such as principal component analysis (PCA), are especially effective in identifying the analytes responsible for statistical differences between samples and revealing underlying patterns related to environmental factors, contamination sources, or other natural characteristics of the Site. Clustering methods were further utilized to group samples based on their combined chemical composition through maximizing intra-group similarity and minimizing inter-group similarity.

PCA is often used to simplify large datasets with multiple variables by creating new uncorrelated variables known as principal components (PCs). The PCs are linear combinations of the original variables; the first few PCs typically capture most of the variation within the dataset. Factor loadings are calculated based on the correlation between PCs and the original variables. As such, variables with notably higher positive or negative factor loadings are main drivers of similarity or dissimilarity and clustering of samples. Factor scores are calculated based on the correlation between the combined chemical composition of each sample and the PCs. Samples with similar chemical compositions show similar factor scores and tend to cluster together on a PCA plot.

In this study, the dataset used for PCA included 62 groundwater samples collected in 2021 and 2023 from upgradient wells (10 and 22), downgradient wells (70S, 71S, 70D, 71D, 16A, and 35D) and a porewater well (NED1).² PCA requires that input variables have similar scales of measurement and variances. As such, data were standardized by mean-centering and scaling to unit variance prior to performing PCA. Data were further square transformed to reduce the skewness of dataset. The fraction of total variation explained by each PC is shown in **Figure 4a**, with the first two PCs accounting for approximately 80 percent [%] of the total variation in the datasets. Additionally, the quality of representation of each variable is presented in **Figure 4b**. As

² Analytes included in the PCA include alkalinity, boron, calcium, pH, barium, chloride, and fluoride. The complete dataset used for PCA analysis is provided with this submission as **Attachment 5**.

illustrated in the figure, the first dimension is dominated by alkalinity, boron, and calcium, while the second dimension is dominated by fluoride, chloride, and barium.

PCA results are often visualized using biplots where samples are projected on to the first two PCs (i.e., factor scores), and factor loadings are represented as vectors. The closer the data points are on the graph, the greater the similarity in their chemical composition. The result from this study is shown on **Figure 5**, where the samples acquired from BCU are orange, UCU and UU are shades of blue, and the porewater samples are gray. The biplot suggests that porewater samples cluster relatively separately from the BCU, UCU, and UU samples. Additionally, the chemical signatures of groundwater samples from the BCU are different than combined group of UCU and UU samples, whereas the composition of upgradient samples from the UCU are similar to those from downgradient UU locations. Upgradient well 22 clusters more closely with the shallower UCU and UU wells. The PCA results indicate that the composition of the BCU groundwater samples is statistically different than that from the porewater, suggesting that the porewater is not the source of elevated lithium, chloride, and TDS to Site groundwater.

Furthermore, the factor loadings, represented as vectors on the biplot, suggest that constituents such as boron and carbonate alkalinity are responsible for the chemical signature of the porewater cluster. In contrast, chloride is one of the drivers for the distinct chemical composition of the BCU cluster.

Clustering was further explored using Ward's hierarchical clustering method, a distance measure employed in agglomerative algorithms and commonly applied in hydrogeochemical studies. The analysis was performed on a scaled and centered dataset. The results from clustering (**Figure 6**), align with findings from the PCA (**Figure 5**) and supported the distinction between porewater samples from downgradient and upgradient groundwater samples from BCU, UCU and UU. Furthermore, the distinct clustering of the BCU samples relative to the clustering of the UCU/UU samples suggests that chemical composition of groundwater samples is primarily influenced by their lithography rather than their relative locations to the CCR unit (i.e., upgradient or downgradient). These results support the conclusion that downgradient locations with lithium and chloride exceedances are not affected by the CCR unit, and their geochemistry is instead influenced by the native lithology.

SULFATE EVALUATION

Elevated sulfate concentrations have been observed in well 35D that are inconsistent with other BCU wells at the Site, as indicated by exceedances of the GWPS for sulfate at well 35D and not at other BCU wells. The PCA results shown in **Figure 5** indicate that for parameters other than sulfate (which was not included in the parameters evaluated in the PCA), the groundwater

chemistry from well 35D is similar to overall bedrock groundwater chemistry. As described above and in greater detail in the Site Hydrogeologic Characterization Report (Ramboll 2021), the BCU contains a major coal seam that has been mined in the vicinity of the NEAP. Samples of this coal were collected and analyzed by Kelron and the ISGS, and XRD results indicate that the coal contains up to 10% iron sulfide, primarily pyrite and marcasite (FeS₂) (Mehnert 2002). Pyrite and especially marcasite are unstable under oxidizing conditions and will readily undergo oxidative dissolution to form dissolved iron and sulfate. This mechanism of sulfate mobilization is further supported by the observation of the iron carbonate mineral siderite (FeCO₃), which was described as a "needle-like white precipitate above the coal in the core" which "is undoubtedly the result of this rapid oxidation" (Mehnert 2002). Siderite is also identified in the bedrock samples collected from borings VER-35 and VER-70 at concentrations ranging from 4.9 to 5.4 weight percent (**Table 2**).

Figure 2 shows the iron thermodynamic stability diagram for the well 35D groundwater. Groundwater pH and ORP data are plotted within the iron stability field, which illustrates that under these conditions, siderite and ferrihydrite are in a state of dynamic equilibrium. The weathering of pyrite to siderite to ferrihydrite would result in an increase in aqueous sulfate concentrations.

Furthermore, strong upward vertical hydraulic gradients are present within the BCU (Kelron 2003; Ramboll 2021). While it is estimated that the coal seam is deeper than the screened interval at well 35D, an upward vertical gradient would cause sulfate generated from sulfide oxidation in the coal to influence the groundwater composition at 35D. **Figure 7** shows the locations where coal and void space were observed during exploratory drilling for the historic coal mine (Kelron 2003). In boring locations B201 and B202, artesian conditions were observed, with water geysering more than 30 feet above ground surface at an estimated flow rate of greater than 100 gallons per minute when the fractured shale was penetrated as the borings were advanced (Kelron 2003). These field observations indicate that the high hydraulic head within the coal seam can influence overlying formations.

As noted above, isotopic analyses of tritium (³H) and radiocarbon (¹⁴C) suggest that the bedrock groundwater is significantly older than the shallower groundwater at the Site (Kelron 2003). Tritium concentrations in the groundwater from the overlying unlithified deposits are between 5.3 and 5.8 tritium units and can be classified as "recent water". Tritium concentrations in the bedrock were non-detect. The age of the bedrock groundwater ranges from approximately 13,000 to 35,000 years before present as determined by radiocarbon dating. The lack of influence from recent water within the bedrock groundwater system provides further evidence that it is isolated from the shallow groundwater and that the elevated sulfate observed in 35D is due to natural variations in sulfur-bearing minerals in the bedrock.

CONCLUSION

Naturally occurring lithium, chloride, and sulfate associated with minerals in the BCU and the coal seam in the vicinity of the NEAP at the Site were identified as alternative sources of these constituents to Site groundwater. Solid-phase samples collected near compliance wells 35D and 70D contained lithium, and SEP analyses demonstrated that much of the lithium in the solid phase is associated with the fractions which correlate to primary minerals such as micas and clay minerals, as well as the fractions associated with sulfides and oxide minerals. XRD identified abundant micas and clay minerals hosted in the shale bedrock that are the source of lithium in Site groundwater. Elevated chloride concentrations in groundwater are observed in the region that originate from Pennsylvanian-aged shale bedrock and brine migration over time. Elevated sulfate concentrations at 35D are associated with the oxidative dissolution of iron sulfide minerals present in coal seams within the bedrock and transported through upward hydraulic gradients within the BCU. Advanced statistical methods demonstrate that groundwater geochemical signatures from the BCU, the UCU, and the UU are distinctly different from that of the porewater based on a combination of parameters.

The alternative source of lithium and chloride observed in wells 35D and 70D is the shale bedrock. The alternative source of sulfate observed in well 35D is the coal seams within the BCU. These elevated chloride and sulfate concentrations are the dominant contributors of elevated TDS values at 70D and 35D, respectively (VER NEAP E001 ASD). This information serves as the written ASD demonstrating that the GWPS exceedances for lithium, chloride, and TDS at well 70D and for lithium, chloride, sulfate, and TDS at 35D were not due to the NEAP CCR unit.

REFERENCES

- Kelron. 2003. Regional and Local Hydrogeology and Geochemistry, Vermilion Power Plant, Illinois. Dynegy Midwest Generation, LLC, November.
- Lloyd, O. B., and W. L. Lyke. 1995. Ground Water Atlas of the United States Illinois, Indiana, Kentucky, Ohio, Tennessee. HA-730K. United States Geological Survey.
- Mehnert, E. and Dreher, G. B. 2002. *The Geochemistry of Groundwater from the Shallow Bedrock in Central Vermilion County, Illinois*. Illinois State Geological Survey. Open-File Series Report 2002-4.

Ohtubo. 1989. "Interaction of Iron Oxides with Clays." Clay Science, 7: 227-242.

Ramboll. 2021. *Hydrogeologic Site Characterization Report – Vermilion Power Plant New East Ash Pond.* Ramboll Americas Engineering Solutions, Inc. October.

- Ramboll. 2022. Evaluation of Potential Groundwater Protection Standard Exceedances New East Ash Pond. Vermilion Power Plant, Oakwood, Illinois. Ramboll Americas Engineering Solutions, Inc. January.
- Ronov, A. B., Migdisov, A. A., Voskresenskaya, N. T., and Korzina, G. A. 1970. "Geochemistry of Lithium in the Sedimentary Cycle." *Geochemistry International* 7: 75-102.
- Schultz, L. G. 1969. "Lithium and Potassium Adsorption, Dehydroxylation Temperature, and Structural Water Content of Aluminous Smectites." *Clays and Clay Minerals* 17(3): 115-150.
- Starkey, H.C., 1982. *The Role of Clays in Fixing Lithium* (No. 1278). US Government Printing Office.
- Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. "Sequential extraction procedure for the speciation of particulate trace metals." *Analytical Chemistry* 5(7): 844–851.
- USGS. 2002. Characterization of the Quality of Coals from the Illinois Basin. Resource Assessment of the Springfield, Herron, Danville, and Baker Coals in the Illinois Basin. Professional Paper 1625-D. United Stats Geological Survey. March.
- Zawidzki, P. 1976. "Lithium Distribution in Micas and its Bearing on the Lithium Geochemistry of Granitoids." *Arch. Mineral* 32: 95-152

TABLES

 Table 1 - Lithium SEP Results Summary

 Vermilion Power Plant - New East Ash Pond

Soil Boring	VER-35		VER-35		VER-70		
Sample Dept	(55-60)		(60-63)		(75-80)		
Locat	Downgradient		Downgradient		Downgradient		
Field Boring Log	g Description	Weathered Shale		Highly Weathered Shale		Highly Weathered Shale	
Total Lit	hium	42		39		42	
		SEP Re	sults				
SEP Fraction	SEP Reagent	Concentration	% of Total	Concentration	% of Total	Concentration	% of Total
Exchangeable Metals Fraction	$MgSO_4$	<10		<10		<11	
Metals Bound to Carbonates Fraction	Sodium acetate, acetic acid	0.56 J	1%	0.62 J	1%	<8.3	
Non-crystalline Materials Fraction	Ammonium oxalate (pH 3)	0.52 J	1%	0.74 J	2%	0.41 J	1%
Metals Bound to Metal Hydroxide Fraction	Hydroxylamine HCl and acetic acid	13	28%	12	27%	12	24%
Bound to Organic Material Fraction	5% sodium hypochlorite (pH 9.5)	4.1 J	9%	3.9 J	9%	4.4 J	9%
Metals Bound to Acid/Sulfide Fraction	HNO ₃ , HCl, and H_2O	13	28%	14	31%	15	30%
Residual Metals Fraction	HF, HNO ₃ , HCL, and H_3BO_3	15	33%	14	31%	19	37%
SEP Total		46.2	100%	45.3	100%	50.8	100%

Notes:

SEP - sequential extraction procedure

ft bgs - feet below ground surface

All results shown in microgram of lithium per gram of soil ($\mu g/g$).

Total lithium was analyzed using aqua regia digest, ICP-MS

Non-detect values are shown as less than the reporting limit.

The lithium fraction associated with each SEP phase is shown.

% of total lithium is calculated from the sum of the SEP fractions.

Table 2 - Summary of X-Ray Diffraction Analysis Vermillion Power Plant - New East Ash Pond

	Field Boring Location		VER-35	VER-35	VER-70
	Sample Depth (ft bgs)	(55-60)	(60-63)	(75-80)	
	Location	Downgradient	Downgradient	Downgradient	
Field Boring Log Description			Weathered Shale	Highly Weathered Shale	Highly Weathered Shale
Mineral/Compound	Formula	Mineral Type	(wt %)	(wt %)	(wt %)
Quartz	SiO ₂	Silicate	38.5	38.1	35.0
Muscovite	KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂	Mica	23.4	23.0	27.0
Albite	NaAlSi ₃ O ₈	Feldspar	12.6	12.6	11.5
Illite	K(Al,Mg,Fe) ₂ (Si,Al) ₄ O ₁₀ (OH) ₂	Clay	7.1	8.0	5.2
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈	Clay	6.9	6.8	7.7
Kaolinite	$Al_2Si_2O_5(OH)_4$	Clay	5.6	5.4	7.5
Siderite	FeCO ₃	Carbonate	4.9	5.0	5.4
Microcline	KAlSi ₃ O ₈	Feldspar	1.0	1.1	0.70
	Clay Minerals Total	19.6	20.2	20.4	
	Clays + Muscovite Total	43.0	43.2	47.4	

Notes

Sample depth is shown in feet below ground surface (ft bgs). wt %: percentage by weight

FIGURES

Columbus, Ohio

October 2023

1

Y:Company\Projects_post_2014\CHE8404_VPS_Closure_RIA_Sprt\500 - Technical\572 - MNA and GSI Evaluation\GIS\MXDs\20231020_Figure 1-Coal_Locations.mxd. ASoltero. 10/20/2023. Project/Phase/Task

Columbus, Ohio

October 2023

ATTACHMENT 1 Cross Sections

NOTES

- 1. This profile was developed by interpolation between widely spaced boreholes. Only at the borehole location should it be considered as an approximately accurate representation and then only to the degree implied by the notes on the borehole logs.
- 2. Scale is approximate.
- 3. Vertical scale is exaggerated 10X.
- Groundwater elevations measured on March 29, 2021. 4
- 5. PMP = Potential Migration Pathway

30' 0 300'

FILL CLAY (CL/CH) TILL (CL/CH) SILT (ML) SAND (SP/SM/SW) GRAVEL (GP/GW)

LEGEND

- WELL SCREEN INTERVAL
- ---- BEDROCK CONFINING UNT POTENTIOMETRIC SURFACE
- BEDROCK CONFINING UNIT / PMP GROUNDWATER / OTHER GROUNDWATER / SURFACE WATER ELEVATION(S)

HYDROGEOLOGIC SITE CHARACTERIZATION REPORT

BEDROCK / WEATHERED BEDROCK (INTERBEDDED SHALE, LIMESTONE, SANDSTONE, V. LITTLE SS)

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

С

NOTES

- 1. This profile was developed by interpolation between widely spaced boreholes. Only at the borehole location should it be considered as an approximately accurate representation and then only to the degree implied by the notes on the borehole logs.
- 2. Scale is approximate.
- 3. Vertical scale is exaggerated 10X.
- 4. Groundwater elevations measured on March 29, 2021.
- 5. PMP = Potential Migration Pathway

ATTACHMENT 2

Boring Logs - VER-35 and VER-70 Soil Boring and Well Construction Logs - 35D and 70D

	Ge	os	ynte	ec			Clien	t: Vistra		BO	
		CO	nsulta	nts			Proje Addr	ct: Vermilion Power Pl	ant New East Ash Pond	Boring No. Page:	VER-35 1 of 4
	engineer	scier	ntists innov	ators			Auur	ess. 10100 Last 2150 N			-
Drillin	g Start a End I	Date Date	06/24	1/202 1/202	3 3				Boring Depth (ft):	63 6	
Drillin	g Com	baile.	Casc	ade	o Drillin	g			Ground Surface Elev. (ft):	• Not surveved	
Drillin	g Meth	od:	Soni	с		0			Boring was advanced adja	cent to well 35D	
Drillin	g Equip	omen	it: Geop	orobe	9				Samples collected from 55	-60 ft bgs and 6	0-63 ft bgs
Driller	:		Jeff .	Jehn							
Logge	ed By:		Andr	ew K	Celley						
	≻		Z			LEC	T				
(lft)	00			[ype	ime	unts	(ft)	SOIL		ON	
	IOH	TER	30R MPL	ple 7	T ⊗	Col	overy	0012/			
ä	5	WA.	CO	Sam	Date	Blow	Rec				
0-					10.25		E 1/	· · · · · · · · · · · · · · · · · · ·			
					10.55	INA	10	(0') GRAVELLY SILT (M minor concretions.	L); light gray to brown (darke	ns downward), dr	y, loose, little sand,
-								(3') CLAYEY SILT (ML);	dark reddish brown, moist, fi	rm, some black o	rganics staining, few
-								gravel, minor iron oxide	stains.		
5											
-											
-											
10											
10-					10:45		2.5/ 10	(10') As above.			
-								(10.6') GRAVELLY SILT sand.	(ML); light gray to brown, mo	oist, loose, fine to	coarse gravel, little
-								(11.6') SILTY CLAY (CL); dark grayish brown, moist,	stiff, medium plas	sticity.
15-											
20-	//////	11 6		1	I	I	I	L			
N	IOTES										

Geosyntec consultants	Clier Proje Add	Client:VistraBORING LOGProject:Vermilion Power Plant New East Ash PondBoring No.VER-35Address:10188 East 2150 North Road, Oakwood, ILPage:2 of 4					
Drilling Start Date:06/24/2023Drilling End Date:06/24/2023Drilling Company:Cascade DDrilling Method:SonicDrilling Equipment:GeoprobeDriller:Jeff JehnLogged By:Andrew Ke	brilling Belley		63 6 Not surveyed cent to well 35D. -60 ft bgs and 60-63 ft bgs				
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type	Date & Time Blow Counts Recovery (ft)	 SOIL/	ROCK VISUAL DESCRIPTI	ON			
	10:55 NA 8/8	(20') CLAY (CL); gray to high plasticity. (22.3') WEATHERED SH disintegrated. (28') As above.	light brown, moist, very soft, tra	ace coarse gravel,			
30- 35- 40- NOTES:	11:55 8/10	(30') SHALE, gray, wet, h	ighly decomposed, slightly disi	ntegrated.			

	Ge	OS cc	synte	ec ¹	0	Client: Vistra BORING LOG Project: Vermilion Power Plant New East Ash Pond Boring No. VER-35								
	engineers	scie	ntists innov	ators			Addr	ess: 10188 East 2150 No	orth Road, Oakwood, IL	Page:	3 of 4			
Drillin Drillin Drillin Drillin Drillin Drille	Drilling Start Date.06/24/2023Drilling End Date:06/24/2023Drilling Company:Cascade DrillinDrilling Method:SonicDrilling Equipment:GeoprobeDriller:Jeff JehnLogged By:Andrew Kelley								Boring Depth (ft):63Boring Diameter (in):6Ground Surface Elev. (ft):Not surveyedBoring was advanced adjacent to well 35D.Samples collected from 55-60 ft bgs and 60-63 ft bgs					
Logg	ed By:		Andr	ew K	Celley									
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/I	ROCK VISUAL DESCRIPTI	ON				
40-					12:10	NA	2/2	(40') As above.						
-					13:20		4/5	(42') WEATHERED SHAL disintegrated.	.E, gray, moist, highly decomp	osed, highly				
45 - - - 50					13:40		3.3/4	(47') As above.						
-					14:05		3/4	(51') As above: slightly de	composed, competent at 1.5-1	l.6 ft.				
55- - - - - - - - - - - - - -					14:20		4/5	(55') As above: slightly les	ss weathered.					
	NOTES:													

	Geosyntec consultants						Client Proje Addre	Client: Vistra BORING LOG Project: Vermilion Power Plant New East Ash Pond Boring No. VER-35 Address: 10188 East 2150 North Road, Oakwood, IL Page: 4 of 4						
Drillir Drillir Drillir Drillir Drillir Drille Logg	ıg Start ıg End I ıg Comļ ıg Meth ıg Equiţ r: ed By:	Date Date: Dany: Dany: Dany:	Caso 306/24 Caso Soni Jeff Andı	I/2023 I/2023 ade I c orobe Jehn rew K	3 Drillin Ş	ıg			Boring Depth (ft): Boring Diameter (in): Ground Surface Elev. (ft): Boring was advanced adja Samples collected from 55	63 6 Not surveyed cent to well 35D -60 ft bgs and 6	0-63 ft bgs			
DEPTH (ft)	LITHOLOGY	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/	ROCK VISUAL DESCRIPTI	ON				
60 					14:50	NA	2/3	(60') As above: gray, mois fragments are slightly mo (63') End of Boring.	st, highly decomposed, highly o	disintegrated, few				
65-														
١	IOTES:													

								Pag	ge 1	of	3
Facility/Project Name	Lice	nse/Permit	/Monito	oring N	umber		Boring	Numb	er		
Vermilion Power Station	Data	Duilling	touted		D	ta Duilli	na Car	MW	35D	Drill	in a Mathad
Bruno Williamson	Date	Drining S	laried		Da	lle Driin	ng Con	npieted		Drii	ing Method
Ramsey Geotechnical Engineering		3/1	/2017				3/3/2	017		ro	tary/auger
Common Well Name	Final	1 Static Wa	ater Lev	el	Surfac	e Eleva	tion		Bo	rehole	Diameter
MW35D		Feet (N	AVD8	8)	58	1.25 Fe	eet (N	AVD	38)	7	.3 inches
Local Grid Origin $[]$ (estimated: $[]$) or Boring Location $[X]$ State Plane 1 279 955 58 N 1 151 276 17 E $(\widehat{D})W$		Lat 4	0° 10)'47.14	4212 "	Local C	irid Lo	cation			
State Flate $1,279,955.56$ N, $1,151,270.17$ E	I	[ong 8	7° 44	4' 8.00	6652"		Fe	et []N]s		Eeet DW
Facility ID County	State		Civil T	'own/C	ity/ or	Village	10		10		
Vermilion	IL		Dany	ville							
Sample							Soil	Prope	erties		-
ا الله الله الله الله الله الله الله ال						f)					
And Geologic Origin For			0	я		essiv h (ts	t		ty		ents
er Each Major Unit		C	aphic	ll Igrai	5	mpre	nten	nit	stici ex	00	D/
Dee		ñ	Lo Gr	Die		Str.	Ω̈́Ŭ	Lig	Pla Ind	P 2	R C O
1 24 2 SS 16.5 3 0 - 2.5' FILL, SILT : ML, very dark grayish b (10YR 3/2), 15-30% silt, trace wood and roo	orown ots.				Ś						
3 = 1 cohesive, low plasticity, moist.	,										
		(FILL ML	'								
					Š.						
$2 \\ 5 \\ 19 \\ 19 \\ 3 \\ -$			$\downarrow \downarrow$								
2.5 - 4.3 SANDY LEAN CLAY: s(CL), weal (2.5 - 4.3' SANDY LEAN CLAY: s(CL), weal (2.5 - 4.3' SANDY LEAN CLAY: s(CL), weal	k red										
increasing with depth, low plasticity, moist.											
		s(CL									
	llowich										
3^{-1} brown (10YR 5/6), fine sand, 15-30% clay, r	moist.	'									
5.1 trace clay.											
				8							
$4 \prod_{10} 24 3 = 6$		SP									Auger
											cobbles on
											flights.
7.5' trace gravel and cobbles.											
5 24 3 8 8 - 8.5' FAT CLAY : CH, very dark grayish b	prown					0.5					
8.5 - 10' Weathered SHALE Bedrock BDX	(SH),					0.0					
very dark grayish brown (10YR 3/2) to very dark grayish brown (10YR 3/2) to very dark gray (GLEX 1 3/10Y) biobly weath	dark	BDX									
red (7.5YR 4/6) discoloration, fissile, moist.	lereu,	(SH)									
$6 \prod_{4} 15 \left \begin{array}{c} 20 \\ 34 \end{array} \right = 10 \left[\begin{array}{c} 10 - 15.6 \end{array} \right]$ Weathered SHALE Bedrock to S	HALE	:- -·									
SS V IS 50 for 3" BDX (SH), gray (GLEY 16/N), weak, fissile, intensely fractured, red (7.5YR 4/6) discolor	, ation,										
1 dry.		BDX (SH)									
I hereby certify that the information on this form is true and correct to the bes	st of m	iy knowled	ige.								

^m Natural Resource Technology 234 W. Florida St., Fifth Floor, Milwaukee, WI 53204 Template: ILLINOIS BORING LOG - Project: 2411 GINT 2017.GPJ Htm ample

SOIL BORING LOG INFORMATION SUPPLEMENT

			TEC	Boring Number MW35D]	Page	e 2	of	3
San	nple									Soi	Pro	per	rties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram	Compressive Strength (tsf)	Moisture Content	Liquid	Limit	Plasticity Index	P 200	RQD/ Comments
7 SS	8 9	45 50 for 2"		10 - 15.6' Weathered SHALE Bedrock to SHALE: BDX (SH), gray (GLEY 1 6/N), weak, fissile, intensely fractured, red (7.5YR 4/6) discoloration, dry. <i>(continued)</i>	PDY										
ss 8	9 7	31 50 for 3"	-14		(SH)										
9 CORE	120 120		-16 -17 -18 -19 -20 -21 -22 -23 -24 -25	15.6 - 45.8' SHALE : BDX (SH), dark reddish gray (10YR 4/1) to gray (2.5Y 5/1), microcrystalline, thinly bedded to laminated, weak, slightly decomposed (very dark gray (10YR 3/1) to black (10YR 2/1) discoloration in partly healed fractures), competent, dry to moist in fractures.	BDX (SH)										Core 9, RQD = 89%. Light brown gray return water. 4" diameter outer casing set from 0-16 ft bgs.
10 CORE	131.3 120		-26 -27 -28 -29 -30 -31 -32	25.6' partly to totally healed fractures.											Core 10, RQD = 89%. Light gray return water.

SOIL BORING LOG INFORMATION SUPPLEMENT

			TLC	Boring Number MW35D						Pag	ge 3	of	3
Sam	nple								Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
11 CORE	111.1 120		$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	 15.6 - 45.8' SHALE: BDX (SH), dark reddish gray (10'R 4/1) to gray (2.5Y 5/1), microcrystalline, thinly bedded to laminated, weak, slightly decomposed (very dark gray (10'R 3/1) to black (10'R 2/1) discoloration in partly healed fractures), competent, dry to moist in fractures. <i>(continued)</i> 41.9' - 43' crossbedding. 45.8' End of Boring. 	BDX (SH)								Core 11, RQD = 93%. Gray return water.

MONITORING WELL CONSTRUCTION

Facility/Project Name	Local Grid Lo	cation of Well			Well Name	
Vermilion Power Station		$\{ft.} \square S$	ft.	\square E. \square W.		
Facility License, Permit or Monitoring No.	Local Grid Or	igin 🗌 (estim	nated: 🗌) or W	Vell Location		
	Lat. <u>40°</u>	10' 47.142"	_ Long. <u>87°</u>	<u>44'</u> <u>8.067''</u> or	MW35D	
Facility ID	St. Plane _1,2	279,955.58 ft. N	I, <u>1,151,276.17</u>	ft. E. (E)/W	Date Well Installed	
	Section Locat	ion of Waste/Sou	rce		03/03/2017	
Type of Well	1/4 of	1/4 of Sec	, T	$\square N. R. \square W$	Well Installed By: (Person's Name and	nd Firm)
mW	Location of W	ell Relative to W	aste/Source	Gov. Lot Number	Bruno Williamson	
Source c State	u 🗌 Upgra	idient s	□ Sidegradient		Ramsey Geotechnical Enginee	ring
tt. IL	d ∐ Dowr	igradient n	□ Not Known	1 Con and look?		
A. Protective pipe, top elevation	ft. MSL			Protective cover n		
B. Well casing, top elevation 58	4.15 ft. MSL			a. Inside diameter:	ipe.	6.0 in.
C Land surface elevation 58	1.25 ft MSI			b. Length:	_	6.0 ft.
	n. mor	TUTUT	Tax 10 mar 10	c. Material:	Steel	\boxtimes
D. Surface seal, bottom ft. MSL	or <u>2.0</u>	t. 575753	11.000		Other	
12. USCS classification of soil near screen:		<u>ANKON ANR</u>	Anterice in	d. Additional prote	ection?	🗆 No
$GP \Box GM \Box GC \Box GW \Box SV$	V 🗆 SP 🗆			If yes, describe:	4" diameter protective PVC casing	_
$ SM \sqcup SC \sqcup ML \sqcup MH \sqcup C \\ Bedrock \boxtimes $				3. Surface seal:	Bentonite	
12 Sieve analysis attached?				Surface Seall	Concrete	\boxtimes
					Other	
14. Drilling method used: Rotar	y 🗆		∛ 🕅 '	4. Material between	well casing and protective pipe:	
Hollow Stem Aug HSA / Rotary	er ∐ ∽ ⊠		8 🕅		Sand Other	
			8 🕺			
15. Drilling fluid used: Water $\boxtimes 0.2$ A	ir 🗆			5. Annular space sea	I: a. Granular/Chipped Bentonite	
Drilling Mud $\Box 0.3$ Nor	e 🗆		8 🕅	bLbs/gal m	ud weight Bentonite-sand slurry	
6			8 🕅	d 30 % Benton	ite Bentonite cement grout	
16. Drilling additives used?	s 🛛 No		3 🕅	$e = Ft^3$	volume added for any of the above	
			8 🕅	f. How installed:	Tremie	\boxtimes
Describe			3 🕅	11 110 11 11010100	Tremie pumped	
17. Source of water (attach analysis, if required):		8 🕅		Gravity	
City of Champaign			88.	6. Bentonite seal:	a. Bentonite granules	
		┘ 🛛 🕅	8 🕅 🖊	b. □ 1/4 in. ⊠3	$3/8$ in. $\Box 1/2$ in. Bentonite chips	\boxtimes
E. Bentonite seal, top551.3 ft. MSL	or <u>30.0</u>	ft.		c	Other	
			8 🕅 / /	7. Fine sand material	: Manufacturer, product name & mes	h size
F. Fine sand, top ft. MSL	or	ft. 🔪 🕷	▓ ▓ / _/	a		
			9 😽 / 🦳	b. Volume added	ft ³	
G. Filter pack, top548.3 ft. MSL	or <u>33.0</u>	ft.	3 🖾 / 🖓	8. Filter pack materia	al: Manufacturer, product name & me	sh size
546.2	25.0			a l	NSF Quartz Sand #10-20	
H. Screen joint, top546.3 ft. MSL	or <u>35.0</u>	ft		b. Volume added	ft ³	
526.2	45.0			9. Well casing:	Flush threaded PVC schedule 40	\boxtimes
I. Well bottom 536.3 ft. MSL	or <u>45.0</u>	ft.			Flush threaded PVC schedule 80	
525.5	15 0				Other	
J. Filter pack, bottom535.5 ft. MSL	or <u>45.8</u>	ft.		0. Screen material:	Schedule 40 PVC	
525.5	15 9			a. Screen Type:	Factory cut	\boxtimes
K. Borehole, bottom ft. MSL	or <u>43.8</u>	ft.			Continuous slot	
73					Other	
L. Borehole, diameter in.		~		b. Manufacturer		0.100 :
238			\backslash	c. Slot size:	-	<u>10.0</u> m.
M. O.D. well casing 2.36 in.				 a. Slotted length. Backfill material (helow filter pack): None	<u> </u>
N LD well cosing 199 :-			1.	1. Dackini inatcital (Other Other	
IN. I.D. well casing 1.77 in.						
I hereby certify that the information on this form	is true and co	rrect to the best o	f my knowledge		Date Modified: 4/6/2017	
Signature		Firm Notara	$\mathbf{D}_{\text{AB}} = \mathbf{T}_{\text{AB}} = \mathbf{T}_{\text{AB}}$	nology	Tel: (414) 837-3607	
the ample		1Natural 234 W F	I RESOUICE TECH	iniology • 5 Milwaukee WI 5	Fax: (414) 837-3608	
· · · · · · · · · · · · · · · · · · ·		237 11.1	101100 01001, 1 1001	5, min waakee, 11 J	5201 . /	

	Ge	os	ynte nsulta	ec ⁽			Clien Proje	t: Vistra ct: Vermilion Power P	lant New East Ash Pond	BO Boring No. Page:	RING LOG VER-70 1 of 4
Drillin Drillin Drillin Drillin Drillen Logge	g Start g End I g Comp g Metho g Equip ": ed By:	Date: Date:	: 06/23 06/23 Casc Sonic :: Geop Jeff Andr	3/2023 3/2023 ade l c orobe Jehn rew K	3 3 Drillin e Kelley	Boring Depth (ft): 80 Boring Diameter (in): 6 Ground Surface Elev. (ft): Not surveyed Boring was advanced adjacent to well 70D. Samples collected from 30-40 ft bgs, 41-42 ft bgs and 75-80 ft bgs					
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL	ROCK VISUAL DESCRIPTI	ON	
		레 가프			10:40	NA	4/10	(0') SILT WITH GRAVEL gravel. (1') SILT (ML); brown to (3.6') SILT (ML); gray to gravel, coarsens downw (10') SILTY GRAVEL (O coarse sand. (10.5') SILTY GRAVEL (12') SANDY SILT (ML);	(ML); light brown, dry, loose, f tan, dry, firm, moderate concr dark gray with little brown, dry ards, moderate concretions.	ine to coarse retions, little grave y, firm, few fine sa xose, some fine to ines downward.	el, few clay.
N	IOTES:			-		· 					

	Ge	os	synte	ec			Clien	t: Vistra		BC	
		co	onsulta	nts			Proje Addr	ct: Vermilion Power Pl	lant New East Ash Pond	Boring No. Page:	VER-70 2 of 4
	engineers	scie	ntists innov	ators			Auur	ess. 10100 Last 2150 N			
Drillin	ig Start Ig End I	Date	e: 06/23	3/202; 2/202	3 2				Boring Depth (ft):	80 6	
Drillin	ia Comi	banv	: Casc	ade l	o Drillir	na			Ground Surface Elev. (ft):	Not surveyed	
Drillin	ig Meth	od:	Sonie	c		Ū			Boring was advanced adja	cent to well 70D).
Drillin	ıg Equip	omer	nt: Geo p	orobe	•				Samples collected from 30	-40 ft bgs, 41-42	2 ft bgs and
Drille	r:		Jeff .	Jehn					10 00 11 590		
Logge	ed By:		Andr	ew K	Celley						
		ΞL	Z		COL	LEC	T				
(ft)	06)	LEVE	NG ETIO	ype	me	nts	(H			ON	
HTH	HOL	ER I	SORI APLE	ple T	& T	Cou	very	SOIL	ROCK VISUAL DESCRIPTI	ON	
B	Ë	WAT	CON	Sam	Date	Blow	Recc				
20											
20-					13:00	NA	3/10	(20') CLAY WITH SILT (CL); grayish brown, wet, stiff,	little sand, little f	ine to coarse gravel.
-								(21') SILTY CLAY (CL);	grayish brown, wet, soft, little	fine gravel, few	
-								(21.3') SANDY CLAY (0	CL); grayish brown, wet, very st	tiff, some gravel.]
-											
-											
25-											
-											
-											
-											
30-							3/10	(30') GRAVELLY CLAY	WITH SAND (CL); grayish bro	own, wet, firm, sa	and coarsens
-								downward.			
-								(31.8') CLAY (CL); dark	gray to black, wet, firm, little g	ravel, few roots	observed, dark
_								òrganics.			
-											
35-											
-											
-											
-											
40-											
	OTES										

	Client: Vistra BO Project: Vermilion Power Plant New East Ash Pond Boring No.						
engineers scientists innovators	Address: 10188 East 2150 North Road, Oakwood, IL	Page: 3 of 4					
Drilling Start Date:06/23/2023Drilling End Date:06/23/2023Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:GeoprobeDriller:Jeff JehnLogged By:Andrew Kelley	Boring Depth (ft): Boring Diameter (in): Ground Surface Elev. (ft): Boring was advanced adja Samples collected from 30 75-80 ft bgs	80 6 Not surveyed cent to well 70D. -40 ft bgs, 41-42 ft bgs and					
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Date & Time	CT (I) CT (I) CT SOIL/ROCK VISUAL DESCRIPTI	ON					
	A 8/10 (40') POORLY GRADED SAND (SP); brown with hint or medium dense, fine grained. (41.7') CLAY (CL); brownish gray, moist, very stiff, fev some sand. (42.4') SHALE, gray, moist, laminated, highly decompodisintegrated. 5/10 (50') As above. (50') As above.	f gray, wet,					
NOTES:							

Geosyntec D	Client: Vistra	BORING LOG						
consultants	Project: Vermilion Power Plant New East Ash P Address: 10188 East 2150 North Road, Oakwood	_{i, IL} Page: 4 of 4						
Drilling Start Date:06/23/2023Drilling End Date:06/23/2023Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:GeoprobeDriller:Jeff JehnLogged By:Andrew Kelley	D23 Boring Depth (ft): 80 D23 Boring Diameter (in): 6 e Drilling Ground Surface Elev. (ft): Not surveyed Boring was advanced adjacent to well 70D. Samples collected from 30-40 ft bgs, 41-42 ft bgs and 75-80 ft bgs in Kelley							
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Date & Time	CT (1) SOIL/ROCK VISUAL DES SOIL/ROCK VISUAL DES	CRIPTION						
	 I/10 (60') SHALE, gray to dark gray, wet (driller werd disintegrated, weaker and more highly disinter fluids. 10/10 (70') SHALE, gray to dark gray, wet, bigbly determined by the gray to dark gray, wet, bigbly determined by the gray to dark gray. 	ater), foliated, highly decomposed, slightly grated shale likely washed out by driller						
75	(70') SHALE, gray to dark gray, wet, highly de coated in wet clay (likely slough). (75') SHALE, gray to dark gray, moist, highly (80') End of Boring.	ecomposed, moderately disintegrated,						

				Page 1 of 3															
Facilit	y/Projee	ct Nam	e	•	License/Permit/Monitoring Number Boring Number 70D														
Porin	milion	POW	er Stat	1011 forew chief (first last) and Firm		oto Dri	lling St	orto	4			Dat	o Drilli	ing Con	/UD		Drilling Mathad		
Jac	on Gra	i Dy. 1		r crew chier (inst, last) and Film			ning St	anc	u			Da		ing Con	ipicicu			ing wet	nou
Cas	cade I	or Drillin	g				3/4/	202	21					3/4/2021			Mini Sonic		
			0	Common Well Name	F	inal Sta	tic Wa	ter I	leve	1	Sı	urface	e Eleva	Ition Borehole Diamete				er	
				70D		Fee	et (NA	٩VI	D88	3)		591	.90 F	eet (NAVD88)			(5.0 inch	nes
Local	Grid Oi	rigin		stimated:) or Boring Location		Ιa	+	0		,		"	" Local Grid Location						
State	Plane I	,278,	929.4	6 N, 1,150,617.15 E (E/W											T .	E			
Facilit	1/4 v ID	of	1	County	Stat	Long	3	Civi	il To	(City		/illage	Fe	et 🗋]8		Feet	
1 define	y ID			Vermilion	III	inois		Oa	ıkw	rood	City	/ 01 1	mage						
Sar	nple					mon				004		đ		Soil	Prope	erties			
				Soil/Rock Description								Lam						1	
	tt. & d (ir	unts	Feet	And Geologic Origin For								eV]	sive (tsf)						S
ype ype	h A vere	Col	l In	Fach Major Unit			S	ic			am	0.6	ores: gth (ure	q	city			nent
lmu T pr	engl	low	eptl				s	rapl	og	/ell	lagr	Ð	oml	foist	iqui imit	lasti ndex	200	QD 0	IIIIO
	니 쓰 60	В	<u> </u>	0 - 6.3' SILT: ML dark brown (10YB 3/3) to	hro	wn			Ш			Р	N C			ЧЛ	P P	CS=C	
ĊS	47		Ë,	(10YR 4/3), clay (15-25%), sand, (0-5%), ro	ots						\mathbb{X}							Sample	Э
				plasticity, moist.	IOW								1.5						
			-3										1 5						
			F				ML						1.5						
			-4																
			-5																
2	60		= 5										1.5						
CS	60		E_6																
			Ē	6.3 - 11.3' SILTY CLAY: CL/ML, brown (10)YR	4/3),		\mathbb{P}	·										
			-7	sand (0-10%), gravel (0-5%), firm, slow dilat	tanc	у,							0.75						
			E	low toughness, medium plasticity, moist.									0.75						
			-8																
			Ē																
			E 9										0.75						
			E-10	9.4' color change to yellowish brown (10YR	8 5/4).													
3 CS	120 120		Ē																
			-11																
			E	11.3 - 14.7' CLAYEY SAND: SC, yellowish	n bro	wn		1											
			-12	(104 R 5/6), rounded fine sand, slit (5-10%), (0-5%), loose, wet.	grav	vei													
			E 12					//	//										
	Ξ^{-13}						SC												
			E_14					//											
			Ē					//											
			-15	-		_	+	P											
I here	by certif	fy that	the info	ormation on this form is true and correct to the b	oest (of my k	nowled	lge.											

Firm Ramboll Signature Tel: (414) 837-3607 in All 234 W. Florida Street, Milwaukee, WI 53204 Fax: (414) 837-3608 Template: RAMBOLL_IL_BORING LOG - Project: 845_VERMILION_2021 (2).GPJ

SOIL BORING LOG INFORMATION SUPPLEMENT

				Boring Number 70D								Pag	e 2	of .	3
Sar	nple								duu		Soil	Prope	rties		
	(ii)	tts	eet	Soil/Rock Description					V La	s (j					
r pe	Att. sred	Coun	In Fe	And Geologic Origin For	s and the second	0		в	.6 e'	essiv h (ts	te		ty		ents
mbe 1 Ty	ngth cove	O M C	pth]	Each Major Unit	C	aphi g	I	agrai	0 10	mpr engt	oistu nten	quid	ıstici lex	00	D/
Nu	Le Re	Ble	De		$\overline{\mathbf{D}}$	Ľ Ü	Ř	ñ	IId	Str Co	ĭ S	Lir	Pla Inc	P 2	RÇ Co
			-16	14.7 - 15' SILTY CLAY: CL/ML, yellowish brown (10YR 5/6), soft, slow dilatancy, low toughness, medium plasticity.	SC										
			-17	15 - 16.2' CLAYEY SAND: SC, yellowish brown (10YR 5/6), rounded fine sand, silt (5-10%), gravel (0-5%), loose, wet.											
			-18	16.2 - 18.8' POORLY-GRADED SAND WITH CLAY: SP-SC, ???, subrounded to rounded, fine to medium sand, loose, wet.	SP-SC										
			E 19	18.8 - 19.6' LEAN CLAY: CL, dark gray (10YR 4/1), gravel, (0-5%), sand (0-5%), stiff, no dilatancy, Now touchness medium plasticity moist	CL					2.5					
4	120		-20	19.6 - 20.3' Weathered SHALE Bedrock BDX	BDX										
CS	97		21	\(SH), gray (10YR 5/1), dry. 20.3 - 52' SHALE: BDX (SH), gray (10YR 5/1).											
			22												
			23												
			-24												
			-25												
			-26												
			E-27												
			-28												
			-29												
5 CS	132 132				BDX (SH)										
			-31												
			-32												
			33												
			- 54 - 35												
			- 36												
			-37												
			-38												
			-39												
			-40												

SOIL BORING LOG INFORMATION SUPPLEMENT

	Boring Number 70D										Pa	ge 3	of	3
San	nple							duu		Soil	Prop	erties		
	t. & l (in)	nts	feet	Soil/Rock Description				SV Lê	ive sf)					10
ype	h At verec	Cou	l In F	And Geologic Origin For Fach Major Unit	S	ic	am	0.6	oressi gth (1	ure	q	city		/ ments
Jum T pur	Lengt	3low	Dept	Lacit Major Onit	U S C	Graph	Well Diagr	DI	Comp	Moist	Limit	Plasti Index	200	RQD, Comr
Ĩ			-	20.3 - 52' SHALE: BDX (SH), gray (10YR 5/1).										
6	132		-41	(communed)										
čš	132		- 12											
			- 42											
			-43											
			44											
			- 15											
			-43											
			46		BDX (SH)									
			-47											
			-48											
			-49											
			-50											
			- 51											
			-52	52' End of Boring.				5						
			. 1			1						1		1

RAMBOLL

MONITORING WELL CONSTRUCTION

Fax: (414) 837-3608

Facility/Project Name	Local Grid Loc	ation of Well			Well Name	
Vermilion Power Station		ft. □ N	ft.	\square E. \square W.		
Facility License, Permit or Monitoring No.	Local Grid Ori	gin 🗌 (estimated:	: 🗌) or W	Vell Location		
	Lat	'" Loi	ng	or	70D	
Facility ID	St. Plane <u>1</u> ,	<u>278,929</u> ft. N,	1,150,617	_ ft. E. (Ē/W	Date Well Installed	
Type of Wall	Section Location	on of Waste/Source			03/04/2021	ama and Firm)
	1/4 of _	1/4 of Sec	, T	. N, R W	wen instaned by. (reison's Na	
Distance from Waste/ State	Location of We	ell Relative to Waste/S	Source	Gov. Lot Number	Jason Greer	
Source ft. Illinois	d 🛛 Opgrad	uradient n □ N	lot Known		Cascade Drilling	g
A. Protective pipe, top elevation 59	5.10 ft. MSL		1	. Cap and lock?		Yes 🗆 No
B. Well casing, top elevation 59	4.52 ft. MSL			2. Protective cover pi	pe:	4.0 in
C. Land surface elevation5	91.9 ft. MSL			b. Length:		<u>5.0</u> ft.
D. Surface seal, bottom ft. MSL	or <u>1.0</u> ft	THE SEA	A Star St	c. Material:	(Steel ⊠ Other □
12. USCS classification of soil near screen:		End In the International	ALCHE OIL	d. Additional prote	ection?	Yes 🗆 No
$GP \Box GM \Box GC \Box GW \Box SV$	V D SP D		\land	If yes, describe:	4 Steel Bollards	
$SM \square SC \square ML \square MH \square CI$ Bedrock \boxtimes			3	3. Surface seal:	Bent Con	onite □ Icrete ⊠
13. Sieve analysis attached? \Box Ye	s 🖾 No				(Other
14. Drilling method used: Rotar	у 🗆		፟ዿ ፞4	. Material between	well casing and protective pipe:	
Hollow Stem Auge	er 🗌		8		Bent	onite
Sonic Othe	er 🛛		8		Sand (Other 🛛
15 Drilling fluid used: Water $\square 0.2$	ir 🗆		5	6. Annular space sea	l: a. Granular/Chipped Bent	onite
Drilling Mud $\Box 0.3$ Non	ш Ц е П		ا	b. <u> </u>	ud weight Bentonite-sand s	lurry 🗋
			8	d % Benton	ite Bentonite-cement	grout
16. Drilling additives used?	s 🛛 No			eFt ³	volume added for any of the abo	ove
			8	f. How installed:	Tr	remie 🗆
Describe).		8		Tremie pur	nped 🖂
17. Source of water (attach analysis, if required	.).		8		Gr	avity 🗆
Potable City Water			6	6. Bentonite seal:	a. Bentonite gran	nules 🗆
557.9 0 100	34.0	. 🛛	`	b. ∐ 1/4 m. ⊠3	$3/8$ in. $\Box 1/2$ in. Bentonite	chips ⊠ Other □
E. Bentonite seal, top ft. MSL o	or	π.	8 / 7	C Fine sand material	· Manufacturer product name	& mesh size
F. Fine sand, top ft. MSL of	or	ft.	▓ / / ′	a	NA	
552.0	20.0		```	b. Volume added	$\frac{0}{10000000000000000000000000000000000$	
G. Filter pack, top ft. MSL of	or <u>39.0</u>	ft.	8	 Filter pack materia a 	al: Manufacturer, product name FILTERSIL 0.85	& mesh size
H. Screen joint, top550.9 ft. MSL	or <u>41.0</u>	ft.		b. Volume added	ft ³	
540.0	51.0		9	0. Well casing:	Flush threaded PVC schedu	le 40 ⊠
I. Well bottom 340.9 ft. MSL of	or $_{51.0}$	#. < []			Flush threaded PVC schedu	
J. Filter pack, bottom540.9 ft. MSL of	or <u>51.0</u>	ft.	10). Screen material:	Schedule 40 PVC	
				a. Screen Type:	Factor	y cut 🛛
K. Borehole, bottom 539.9 ft. MSL	or <u>52.0</u>	ft.			Continuou	s slot
L Develope timester 60 in				h Manufaaturar	Iohnson Screens	Jther □
L. Dorenoie, diameter in.			\backslash	c. Slot size		- 0.010 in
M. O.D. well casing 2.38 in			\backslash	d. Slotted length:		<u>10.0</u> ft.
in.			× ₁₁	. Backfill material (below filter pack):	None
N. I.D. well casing 2.07 in.				Form	nation Materials (Other 🛛
Lhereby certify that the information on this form	is true and cor	rrect to the best of m	knowledge		Date Modified: 3/31/2021	
Signature / / /		Firm Ramboll	Kilowicuge.		Tel: (414) 837-3607	
1. Htte		Manifoli			E (414) 007 2007	

234 W. Florida Street, Milwaukee, WI 53204

Signature	in Ale
	in Ale

ATTACHMENT 3

Sequential Extraction Procedure Laboratory Analytical Reports

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Allison Kreinberg Geosyntec Consultants Inc 941 Chatham Lane Suite 103 Columbus, Ohio 43221 Generated 8/3/2023 11:56:48 AM

JOB DESCRIPTION

Vermilion SEP

JOB NUMBER

140-32513-1

Eurofins Knoxville 5815 Middlebrook Pike Knoxville TN 37921

Eurofins Knoxville

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

yan Henyy

Authorized for release by Ryan Henry, Project Manager I <u>WilliamR.Henry@et.eurofinsus.com</u> (865)291-3006 Generated 8/3/2023 11:56:48 AM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Sample Summary	7
Client Sample Results	8
Default Detection Limits	11
QC Sample Results	13
QC Association Summary	19
Lab Chronicle	24
Certification Summary	33
Method Summary	34
Chain of Custody	35

Qualifiers

Qualifiers		_ 3
<mark>Metals</mark> Qualifier	Qualifier Description	4
B J	Compound was found in the blank and sample. Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	7
%R	Percent Recovery	
CFL	Contains Free Liquid	0
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	13

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Laboratory: Eurofins Knoxville

Narrative

Job Narrative 140-32513-1

Receipt

The samples were received on 7/3/2023 at 11:15am and arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 20.3° C.

Receipt Exceptions

The Field Sampler was not listed on the Chain of Custody.

Metals

7 Step Sequential Extraction Procedure

These soil samples were prepared and analyzed using Eurofins TestAmerica Knoxville standard operating procedure KNOX-MT-0008, "7 Step Sequential Extraction Procedure". SW-846 Method 6010B as incorporated in Eurofins TestAmerica Knoxville standard operating procedure KNOX-MT-0007 was used to perform the final instrument analyses.

An aliquot of each sample was sequentially extracted using the steps listed below:

• Step 1 - Exchangeable Fraction: A 5 gram aliquot of sample was extracted with 25 mL of 1M magnesium sulfate (MgSO4), centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.

 Step 2 - Carbonate Fraction: The sample residue from step 1 was extracted with 25 mL of 1M sodium acetate/acetic acid (NaOAc/HOAc) at pH 5, centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.

• Step 3 - Non-crystalline Materials Fraction: The sample residue from step 2 was extracted with 25 mL of 0.2M ammonium oxalate (pH 3), centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.

• Step 4 - Metal Hydroxide Fraction: The sample residue from step 3 was extracted with 25 mL of 1M hydroxylamine hydrochloride solution in 25% v/v acetic acid, centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.

• Step 5 - Organic-bound Fraction: The sample residue from step 4 was extracted three times with 25 mL of 5% sodium hypochlorite (NaCIO) at pH 9.5, centrifuged and filtered. The resulting leachates were combined and 5 mL were digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.

 \cdot Step 6 - Acid/Sulfide Fraction: The sample residue from step 5 was extracted with 25 mL of a 3:1:2 v/v solution of HCI-HNO3-H2O, centrifuged and filtered. 5 mL of the resulting leachate was diluted to 50 mL with reagent water and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.

Step 7 - Residual Fraction: A 1.0 g aliquot of the sample residue from step 6 was digested using HF, HNO3, HCl and H3BO3. The digestate was analyzed by ICP using method 6010B. Results are reported in mg/kg on a dry weight basis.

In addition, a 1.0 g aliquot of the original sample was digested using HF, HNO3, HCl and H3BO3. The digestate was analyzed by ICP using method 6010B. Total metal results are reported in mg/kg on a dry weight basis.

Results were calculated using the following equation:

Result, μ g/g or mg/Kg, dry weight = (C × V × V1 × D) / (W × S × V2)

Where:

- C = Concentration from instrument readout, µg/mL
- V = Final volume of digestate, mL
- D = Instrument dilution factor
- V1 = Total volume of leachate, mL
- V2 = Volume of leachate digested, mL
- W = Wet weight of sample, g

Job ID: 140-32513-1 (Continued)

Laboratory: Eurofins Knoxville (Continued)

S = Percent solids/100

A method blank, laboratory control sample and laboratory control sample duplicate were prepared and analyzed with each SEP step in order to provide information about both the presence of elements of interest in the extraction solutions, and the recovery of elements of interest from the extraction solutions. Results outside of laboratory QC limits do not reflect out of control performance, but rather the effect of the extraction solution upon the analyte.

A laboratory sample duplicate was prepared and analyzed with each batch of samples in order to provide information regarding the reproducibility of the procedure.

SEP Report Notes:

The final report lists the results for each step, the result for the total digestion of the sample, and a sum of the results of steps 1 through 7 by element.

Magnesium was not reported for step 1 because the extraction solution for this step (magnesium sulfate) contains high levels of magnesium.

Sodium was not reported for steps 2 and 5 since the extraction solution for these steps contain high levels of sodium.

The sum of steps 1 through 7 is much higher than the total result for sodium and magnesium due to the magnesium and sodium introduced by the extraction solutions.

The digestates for steps 1, 2 and 5 were analyzed at a dilution due to instrument problems caused by the high solids content of the digestates. The reporting limits were adjusted accordingly.

The serial dilution is analyzed at an additional 5 fold dilution using the dilution factors applied to the duplicate and the associated original sample. Due to a limitation of the expanded deliverable forms, the dilutions of the duplicate and serial dilution in the expanded deliverable are not expressed on a per analyte basis.

Please refer to the summary section of the report for the duplicate information as it contains the dilution factors at which the sample was analyzed.

Method 6010B: The serial dilution performed for the following samples associated with batch 140-75976 were outside control limits: VER-35 55-60 20230624 (140-32513-1), (140-32513-A-1-C SD ^10) and (140-32513-A-1-C SD ^5)

Method 6010B: The following samples were diluted to bring the concentration of target analyte, Iron, within the calibration range: VER-35 55-60 20230624 (140-32513-1), VER-35 60-63 20230624 (140-32513-2) and VER-70 75-80 20230623 (140-32513-3). Elevated reporting limits (RLs) are provided.

Method 6010B SEP: The serial dilution performed for the following samples associated with batch 140-75894 was outside control limits: VER-35 55-60 20230624 (140-32513-1), (140-32513-A-1-S SD ^5) and (140-32513-A-1-W SD ^5)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

% Moisture: The samples were analyzed for percent moisture using SOP number KNOX-WC-0012 (based on Modified MCAWW 160.3 and SM2540B and on the percent moisture determinations described in methods 3540C and 3550B).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Sample Summary

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
140-32513-1	VER-35 55-60 20230624	Solid	06/24/23 14:20	07/03/23 11:15
140-32513-2	VER-35 60-63 20230624	Solid	06/24/23 14:50	07/03/23 11:15
140-32513-3	VER-70 75-80 20230623	Solid	06/23/23 17:00	07/03/23 11:15

Client Sample ID: VER-35 55-60 20	230624				L	ab Sample	e ID: 140-32	2513-1
Date Collected: 06/24/23 14:20						-	Matrix	: Solid
Date Received: 07/03/23 11:15							Percent Solid	ls: 95.4
Method: SW846 6010B SEP - SEP Meta	s (ICP) - Sten	1						
Analyte Resu	It Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Iron N		21	12	mg/Kg	— <u> </u>	07/11/23 08:00	07/27/23 13:01	4
Lithium N	D	10	0.63	mg/Kg	₽	07/11/23 08:00	07/27/23 13:01	4
Manganese 7	.6	3.1	0.13	mg/Kg	¢	07/11/23 08:00	07/27/23 13:01	4
Method: SW846 6010B SEP - SEP Meta	s (ICP) - Sten	2						
Analyte Resu	It Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Iron 50	0	16	9.1	mg/Kg		07/12/23 08:00	07/27/23 13:51	3
Lithium 0.	6 J	7.9	0.47	mg/Kg	₽	07/12/23 08:00	07/27/23 13:51	3
Manganese	9	2.4	0.88	mg/Kg	¢	07/12/23 08:00	07/27/23 13:51	3
Mothod: SW846 6010B SED - SED Moto	e (ICP) - Stop	2						
Analyte Resi	It Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		52	3.0	ma/Ka		1100000000000000000000000000000000000	$\frac{7110}{07/27/23}$ 14.40	1
Lithium 0		2.6	0.16	ma/Ka	-0-	07/13/23 08:00	07/27/23 14.40	1
Manganese 1'	0 B	0.79	0.028	mg/Kg	¢	07/13/23 08:00	07/27/23 14:40	1
Method: SW846 6010B SEP - SEP Meta	s (ICP) - Step	4	MDI	11	_	Durananad	A sea h sea al	
					<u> </u>	Prepared		
Iron 2000		5.2	3.0	mg/kg	بلا بلا	07/17/23 08:00	07/20/23 12:49	1
Lithium A	3 10	2.0	0.16	mg/Kg ma/Ka	¥ Č	07/17/23 08:00	07/28/23 12:49	1
	•		0			0.7.1720 00100	01/20/20 12110	
Method: SW846 6010B SEP - SEP Meta	s (ICP) - Step	5						
Analyte Resu	It Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron N	D	79	46	mg/Kg	¢	07/19/23 08:00	07/28/23 13:39	5
Lithium 4	.1 J	39	2.3	mg/Kg	¢	07/19/23 08:00	07/28/23 13:39	5
Manganese	6	12	1.9	mg/Kg	¢	07/19/23 08:00	07/28/23 13:39	5
Method: SW846 6010B SEP - SEP Meta	s (ICP) - Step	6						
Analyte Resu	lt Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron 1100	0	5.2	3.0	mg/Kg	<u></u>	07/19/23 08:00	07/28/23 14:29	1
Lithium	3	2.6	0.16	mg/Kg	¢	07/19/23 08:00	07/28/23 14:29	1
Manganese 13	0	0.79	0.26	mg/Kg	¢	07/19/23 08:00	07/28/23 14:29	1
Method: SW846 6010B SEP - SEP Meta	s (ICP) - Step	7						
Analyte Resu	It Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron 430	0	5.2	4.3	mg/Kg		07/20/23 08:00	07/31/23 12:46	1
Lithium	5	2.6	0.16	mg/Kg	¢	07/20/23 08:00	07/31/23 12:46	1
Manganese	1	0.79	0.32	mg/Kg	₽	07/20/23 08:00	07/31/23 12:46	1
Mothod: SW846 6010B SED - SED Moto		of Stone 1.	,					
Analyte Res	s (ICF) - Sum		MDI	Unit	п	Propared	Analyzod	Dil Fac
		<u> </u>	4 1	ma/Ka			08/02/23 14.24	1
Lithium	6	2.5	0.15	ma/Ka			08/02/23 14:24	1
Manganese 78	0	0.75	0.052	mg/Kg			08/02/23 14:24	1
Method: SW846 6010B - SEP Metals (IC	P) - Iotal		MD	11:0:4	~	Drensus		
Rest					<u> </u>	7/21/22 09:00	Analyzea	
lithium 3800			0.0	mg/Kg	*	07/21/22 00.00	07/21/22 14.12	۲ ۲
	~	2.0	0.10	mg/Ng	ᆉ	U112 1/23 UO.UU	01/01/20 13.22	1

Eurofins Knoxville

07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23 13:22
 07/21/23 08:00 07/31/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21/23
 07/21
 07/21/23
 07/21/23
 07/21
 07/21/23
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 07/21
 0

0.79

0.32 mg/Kg

610

Manganese

		Client Sa	mple	Resul	ts					
Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP			•					Job ID: 140-3	32513-1	2
Client Sample ID: VER-35 60	-63 202	30624				L	ab Sample	e ID: 140-32	2513-2	
Date Collected: 06/24/23 14:50								Matrix	c: Solid	
Date Received: 07/03/23 11:15								Percent Solid	ls: 95.4	
Method: SW846 6010B SEP - SE	P Metals	(ICP) - Step 1		MDI	11		Duenened	A starburge al		5
	Result	Qualifier				<u> </u>	Prepared	Analyzed		J
lithium			21 10	0.63	mg/Kg	· ·	07/11/23 08:00	07/27/23 13.11	4	6
Manganoso	79		3 1	0.03	mg/Kg	ж Ж	07/11/23 08:00	07/27/23 13:11	4	U
	1.5		0.1	0.10	ing/itg	~	0771720 00.00	01121120 10.11	-	
Method: SW846 6010B SEP - SE	P Metals	(ICP) - Step 2								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	2
Iron	570		16	9.1	mg/Kg	¢	07/12/23 08:00	07/27/23 14:01	3	0
Lithium	0.62	J	7.9	0.47	mg/Kg	¢	07/12/23 08:00	07/27/23 14:01	3	0
Manganese	29		2.4	0.88	mg/Kg	☆	07/12/23 08:00	07/27/23 14:01	3	3
Mothod: SW846 6010B SED - SE	P Motale	(ICP) - Stop 3								
Analyte	Result	Qualifier	RI	мы	Unit	р	Prepared	Analyzed	Dil Fac	
	4200		5.2	3.0	ma/Ka	— <u>–</u>	07/13/23 08:00	07/27/23 14:50	1	
Lithium	0.74	J	2.6	0.16	ma/Ka	÷	07/13/23 08:00	07/27/23 14:50	1	
Manganese	110	В	0.79	0.028	mg/Kg	₽	07/13/23 08:00	07/27/23 14:50	1	
					0 0					
Method: SW846 6010B SEP - SE	P Metals	(ICP) - Step 4								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Iron	18000		5.2	3.0	mg/Kg	¢	07/17/23 08:00	07/28/23 12:59	1	
Lithium	12		2.6	0.16	mg/Kg	¢	07/17/23 08:00	07/28/23 12:59	1	
Manganese	380		0.79	0.14	mg/Kg	¢	07/17/23 08:00	07/28/23 12:59	1	
Method: SW846 6010B SEP - SE	P Metals	(ICP) - Step 5								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Iron	ND		79	46	mg/Kg	— <u> </u>	07/19/23 08:00	07/28/23 13:49	5	
Lithium	3.9	J	39	2.3	mg/Kg	¢	07/19/23 08:00	07/28/23 13:49	5	
Manganese	35		12	1.9	mg/Kg	¢	07/19/23 08:00	07/28/23 13:49	5	
Method: SW846 6010B SEP - SE	P Metals	(ICP) - Step 6				_	- ·			
Analyte	Result	Qualifier	RL	MDL	Unit	<u> </u>	Prepared	Analyzed	Dil Fac	
Iron	11000		5.2	3.0	mg/Kg	\$	07/19/23 08:00	07/28/23 14:39	1	
Litnium	14		2.0	0.10	mg/Kg	았 쓰	07/19/23 08:00	07/28/23 14:39	1	
manganese	140		0.79	0.20	mg/rtg	74	07/19/23 08:00	01120123 14.39	1	
Method: SW846 6010B SEP - SE	P Metals	(ICP) - Step 7								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Iron	4200		5.2	4.3	mg/Kg	¢	07/20/23 08:00	07/31/23 12:57	1	
Lithium	14		2.6	0.16	mg/Kg	¢	07/20/23 08:00	07/31/23 12:57	1	
Manganese	30		0.79	0.33	mg/Kg	¢	07/20/23 08:00	07/31/23 12:57	1	
Method: SW846 6010B SEP - SE	P Metals	(ICP) - Sum of	Steps	1-7						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Iron	38000		5.0	4.1	mg/Kg			08/02/23 14:24	1	
Lithium	45		2.5	0.15	mg/Kg			08/02/23 14:24	1	
Manganese	730		0.75	0.052	mg/Kg			08/02/23 14:24	1	
Method: SW846 6010B - SEP Me	tals (ICP	- Total								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Iron	37000	· · ·	10	8.6	mg/Kg	— <u>–</u>	07/21/23 08:00	07/31/23 14:22	2	
Lithium	39		2.6	0.16	mg/Kg	¢	07/21/23 08:00	07/31/23 13:33	1	

07/21/23 08:00 07/31/23 13:33

0.79

0.33 mg/Kg

520

Manganese

			Client Sa	mple	Result	ts					
Clie Pro	ent: Geosyntec Consultants Inc ject/Site: Vermilion SEP			•					Job ID: 140-3	2513-1	2
Cl	ent Sample ID: VER-70 75-8	30 202	230623				l	ab Sample	e ID: 140-32	513-3	
Da	te Collected: 06/23/23 17:00								Matrix	: Solid	
Da	te Received: 07/03/23 11:15								Percent Solid	s: 90.0	
Гм	athod: SW846 6010B SEP - SEP I	Motale	(ICP) - Stop 1								-
A	nalvte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Irc	on	ND			13	mg/Kg	 #	07/11/23 08:00	07/27/23 13:16	4	
Lit	hium	ND		11	0.67	mg/Kg	¢	07/11/23 08:00	07/27/23 13:16	4	6
М	anganese	7.6		3.3	0.14	mg/Kg	¢	07/11/23 08:00	07/27/23 13:16	4	
Гм	ethod: SW846 6010B SEP - SEP I	Motals	(ICP) - Step 2								
A	nalvte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Ire	on	730		17	9.7	mg/Kg	<u> </u>	07/12/23 08:00	07/27/23 14:06	3	8
Lit	hium	ND		8.3	0.50	mg/Kg	¢	07/12/23 08:00	07/27/23 14:06	3	
М	anganese	36		2.5	0.93	mg/Kg	¢	07/12/23 08:00	07/27/23 14:06	3	9
Γ.		Matala									
	etnoa: 500846 60108 5EP - 5EP 1 nalvto		(ICP) - Step 3	Ы	мы	Unit	п	Propared	Analyzod	Dil Eac	
		5500		5.6	3.2	ma/Ka		07/13/23 08:00	07/27/23 14:55	1	
	thium	0 41		2.8	0.17	ma/Ka	т т	07/13/23 08:00	07/27/23 14:55	1	
M	anganese	130	в	0.83	0.030	mg/Kg	¢	07/13/23 08:00	07/27/23 14:55	1	
	· · · · · · · · · · · · · · · · · · ·										
M	ethod: SW846 6010B SEP - SEP I	Metals	(ICP) - Step 4				_	- ·			
	nalyte	Result	Qualifier		MDL	Unit	<u> </u>	Prepared	Analyzed	Dil Fac	
Ire	on thisse	31000		11	0.4	mg/Kg	\$P	07/17/23 08:00	07/28/23 14:55	2	
		12		∠.0 0.83	0.17	mg/Kg	بد بر	07/17/23 08:00	07/28/23 13:04	1	
	anyanese	510		0.05	0.14	mg/ng	<i>ب</i> ر	07/17/23 00:00	07/20/23 13:04	1	
M	ethod: SW846 6010B SEP - SEP I	Metals	(ICP) - Step 5								
A	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Ire	on	61	J	83	49	mg/Kg	¢	07/19/23 08:00	07/28/23 13:54	5	
Li	thium	4.4	J	42	2.4	mg/Kg	¢	07/19/23 08:00	07/28/23 13:54	5	
M	anganese	54		12	2.1	mg/Kg	¢	07/19/23 08:00	07/28/23 13:54	5	
Гм	ethod: SW846 6010B SEP - SEP I	Metals	(ICP) - Step 6								
A	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Ire	on	14000		5.6	3.2	mg/Kg	<u></u>	07/19/23 08:00	07/28/23 14:44	1	
Li	thium	15		2.8	0.17	mg/Kg	¢	07/19/23 08:00	07/28/23 14:44	1	
M	anganese	160		0.83	0.28	mg/Kg	☆	07/19/23 08:00	07/28/23 14:44	1	
Гм	athod: SW846 6010B SEP - SEP I	Motale	(ICP) - Step 7								
A	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Ire		5500	·	5.6	4.6	mg/Kg	`	07/20/23 08:00	07/31/23 13:17	1	
Li	thium	19		2.8	0.17	mg/Kg	¢	07/20/23 08:00	07/31/23 13:17	1	
м	anganese	39		0.83	0.34	mg/Kg	¢	07/20/23 08:00	07/31/23 13:17	1	
Γ.	athed SW846 CO40B SED SED	Matala		Stone 4	. 7						
	etnoa: 500846 60108 5EP - 5EP 1 nalvte	Result	(ICP) - SUM OT	Steps 1	I-7 MDI	Unit	п	Prepared	Analyzed	Dil Fac	
	<u> </u>	57000	<u></u>	5.0	4 1	ma/Ka			08/02/23 14.24	1	
	thium	51		2.5	0.15	mg/Ka			08/02/23 14:24	1	
M	anganese	940		0.75	0.052	mg/Kg			08/02/23 14:24	1	
	•	•									
M	ethod: SW846 6010B - SEP Metal	ls (ICP) - Total								
	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
lre	on 	66000		28	23	mg/Kg	¢	07/21/23 08:00	07/31/23 15:08	5	
Li	tnium	42		2.8	0.17	mg/Kg	¢	07/21/23 08:00	07/31/23 13:39	1	

Eurofins Knoxville

07/21/23 08:00 07/31/23 13:39
 07/21/23 08:00 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23 13:39
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31/23
 07/31
 07/31/23
 07/31/2
 07/31
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07/31/2
 07

0.83

0.34 mg/Kg

720

Manganese

Default Detection Limits

RL

5.0

2.5

RL

5.0

2.5 0.75

0.75

MDL

0.15

0.031

MDL

2.9

0.15

0.28

2.9

Units

mg/Kg

mg/Kg

mg/Kg

Units

mg/Kg

mg/Kg

mg/Kg

Prep: 3010A

Analyte

Manganese

Prep: 3010A **SEP: Carbonate**

Analyte

Lithium

Manganese

Iron

Iron Lithium

SEP: Exchangeable

5
7
 8
9

Method: 6010B SEP - SEP Metals (ICP) - Step 3 Prep: 3010A

Method: 6010B SEP - SEP Metals (ICP) - Step 1

Method: 6010B SEP - SEP Metals (ICP) - Step 2

SEP: Non-Crystalline

Analyte	RL	MDL	Units
Iron	5.0	2.9	mg/Kg
Lithium	2.5	0.15	mg/Kg
Manganese	0.75	0.027	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 4 Prep: 3010A

SEP: Metal Hydroxide

Analyte	RL	MDL	Units
Iron	5.0	2.9	mg/Kg
Lithium	2.5	0.15	mg/Kg
Manganese	0.75	0.13	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 5 Prep: 3010A

SEP: Organic-Bound

Analyte Iron	RL 15	MDL 8.8	Units mg/Kg
Lithium	7.5	0.44	mg/Kg
Manganese	2.3	0.37	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 6

SE	P :	Aci	id/	Su	fide

Analyte	RL	MDL	Units
Iron	5.0	2.9	mg/Kg
Lithium	2.5	0.15	mg/Kg
Manganese	0.75	0.25	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 7

Prep: Residual

Analyte	RL	MDL	Units
Iron	5.0	4.1	mg/Kg
Lithium	2.5	0.15	mg/Kg
Manganese	0.75	0.31	mg/Kg

Default Detection Limits

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP Job ID: 140-32513-1

7

Method: 6010B SEP - SEP Metals (ICP) - Sum of Steps 1-7					
Analyte	RL	MDL	Units		
Iron	5.0	4.1	mg/Kg		
Lithium	2.5	0.15	mg/Kg		
Manganese	0.75	0.052	mg/Kg		
Mothod: 6010B - SEP Motals (ICP) - Total					

Method: 6010B - SEP Metals (ICP) - Total Prep: Total

Analyte	RL	MDL	Units
Iron	5.0	4.1	mg/Kg
Lithium	2.5	0.15	mg/Kg
Manganese	0.75	0.31	mg/Kg

Lab Sample ID: MB 140-75187/5-A

Matrix: Solid

Analyte

Lithium

Manganese

Matrix: Solid

Iron

Analysis Batch: 75976

Method: 6010B - SEP Metals (ICP) - Total

MB MB

ND

ND

ND

Result Qualifier

RL

5.0

2.5

0.75

MDL Unit

4.1 mg/Kg

0.15 mg/Kg

0.31 mg/Kg

Prep Type: Total/NA Prep Batch: 75187

Prep Type: Total/NA

8

Dil Fac

1

1

1

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 75187

07/21/23 08:00 07/31/23 12:31

07/21/23 08:00 07/31/23 12:31

07/21/23 08:00 07/31/23 12:31

Client Sample ID: Lab Control Sample Dup

Client Sample ID: VER-35 55-60 20230624

Prepared

D

Client Sample ID: Method Blank

Analyzed

An	alysis Batch: 75976							Prep E	Batch: 75187
		Spike	LCS	LCS				%Rec	
Ana	lyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron		50.0	53.2		mg/Kg		106	80 - 120	
Lithi	um	5.00	5.23		mg/Kg		105	80 - 120	
Man	iganese	5.00	5.21		mg/Kg		104	80 - 120	

Lab Sample ID: LCSD 140-75187/7-A **Matrix: Solid**

Lab Sample ID: LCS 140-75187/6-A

Analysis Batch: 75976

Analysis Batch: 75976						Prep Batch: 75187				
-	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Iron	50.0	54.5		mg/Kg		109	80 - 120	2	30	
Lithium	5.00	5.14		mg/Kg		103	80 - 120	2	30	
Manganese	5.00	5.27		mg/Kg		105	80 - 120	1	30	

Lab Sample ID: 140-32513-1 DU Matrix: Solid

Matrix: Solid						Prep Type: Tot	tal/NA	
Analysis Batch: 75976							Prep Batch:	75187
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Lithium	42		42.1		mg/Kg	\$	0	30
Manganese	610		613		mg/Kg	¢	0.8	30

Lab Sample ID: 140-32513-1 DU					Client Sample ID: VER-35 55-60 202306								
Matrix: Solid								Prep T	ype: Tot	al/NA			
Analysis Batch: 75976								Prep	Batch:	75187			
	Sample	Sample		DU	DU					RPD			
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limit			
Iron	38000			39200		mg/Kg	\$		2	30			

Method: 6010B SEP - SEP Metals (ICP)

Lab Sample ID: MB 140-751 Matrix: Solid Analysis Batch: 75871	84/5-B ^4						Client Samp	le ID: Methoo Prep Type: Prep Batch	l Blank Step 1 : 75207
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		20	12	mg/Kg		07/11/23 08:00	07/27/23 12:47	4
Lithium	ND		10	0.60	mg/Kg		07/11/23 08:00	07/27/23 12:47	4
Manganese	ND		3.0	0.12	mg/Kg		07/11/23 08:00	07/27/23 12:47	4

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: LCS 140-	75184/6-B ^5	5						Clie	nt Sa	mple ID:	Lab Co	ntrol Sa	ample
Matrix: Solid											Prep	Type: S	Step 1
Analysis Batch: 75871											Prep E	Batch:	75207
				Spike	_ L	CS	LCS		_	~-	%Rec		
Analyte	·			Added	Res	sult	Qualifier	Unit	D	<u>%Rec</u>	Limits		
Iron				50.0	5	4.4		mg/Kg		109	80 - 120		
Lithium				5.00	5	.66	J	mg/Kg		113	80 - 120		
Manganese				5.00	5	.54		mg/Kg		111	80 - 120		
Lab Sample ID: LCSD 140)-75184/7-B 4	^5						Client Sa	mple	ID: Lab	Control	Sampl	e Dup
Matrix: Solid											Prep	Type: S	Step 1
Analysis Batch: 75871											Prep E	Batch:	75207
-				Spike	LC	SD	LCSD				%Rec		RPD
Analyte				Added	Res	ult	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron				50.0	5	4.2		mg/Kg		108	80 - 120	0	30
Lithium				5.00	5	.44	J	mg/Kg		109	80 - 120	4	30
Manganese				5.00	5	.51		mg/Kg		110	80 - 120	1	30
 								Olient				~ ~ ~ ~ ~	20024
Lab Sample ID: 140-3251. Motrix: Solid	3-1 DU							Cheft a	samp		R-30 00-		30024 Stop 1
Matrix: Solid											Prep Drop I	Type: 3	51ep 1
Analysis Batch: 75671	Somalo	Some									Prepi	satch:	/ 520 /
Analyta	Sample	Ouali	fior		Por		Oualifiar	Unit	п			חסס	Limit
		Quali			Net		Quaimer		— <u>–</u>				30
Lithium								mg/Kg	*			NC	30
Manganese	76				7	29		ma/Ka	ж Ф			4	30
					•								
Lab Sample ID: MB 140-7	5227/5-B ^3								Clie	ent Samp	ole ID: M	ethod	Blank
Lab Sample ID: MB 140-7 Matrix: Solid	5227/5-B ^3								Cli	ent Samp	ole ID: M Prep	ethod Type: \$	Blank Step 2
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871	5227/5-B ^3								Cli	ent Samp	ole ID: M Prep Prep I	ethod Type: \$ Batch: '	Blank Step 2 75260
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871	5227/5-B ^3	MB N	МВ						Clie	ent Samp	ole ID: M Prep Prep I	ethod Type: \$ Batch: '	Blank Step 2 75260
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte	5227/5-B ^3	MB MB	MB Qualifier		RL	ſ	MDL Unit		Clie	ent Samp	ole ID: M Prep Prep E Analy	ethod Type: \$ Batch: [*] zed	Blank Step 2 75260 Dil Fac
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron	5227/5-B ^3	MB M sult C	MB Qualifier		RL 15	ſ	MDL Unit	<u>(g</u>	Clic <u>D</u> <u>P</u> 07/*	repared	Die ID: M Prep Prep E Analy 07/27/23	ethod Type: \$ Batch: zed 13:36	Blank Step 2 75260 Dil Fac 3
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium	5227/5-B ^3	MB M sult C ND ND	MB Qualifier		RL 15 7.5	r	MDL Unit 8.7 mg/k 0.45 mg/k	(g (g	Clic <u>D</u> <u>F</u> 07/* 07/*	repared 2/23 08:00	Die ID: M Prep Prep E Analy 07/27/23 07/27/23	ethod Type: S Batch: zed 13:36	Blank Step 2 75260 Dil Fac 3 3
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese	5227/5-B ^3	MB M sult (ND ND ND	MB Qualifier		RL 15 7.5 2.3	ſ	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k	(g (g	Clic D F 07/' 07/' 07/'	repared 2/23 08:00 2/23 08:00 2/23 08:00	Die ID: M Prep Prep E Analy 07/27/23 07/27/23	ethod Type: \$ Batch: 13:36 13:36 13:36	Blank Step 2 75260 Dil Fac 3 3 3 3
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese	5227/5-B ^3	MB M sult (ND ND ND	MB Qualifier		RL 15 7.5 2.3	r	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k	(g (g (g Clie	Clic <u>D</u> <u>F</u> 07/' 07/' 07/' 07/'	repared 2/23 08:00 2/23 08:00 2/23 08:00	Die ID: M Prep Prep I <u>Analy</u> 07/27/23 07/27/23 1 ab Cou	ethod Type: Satch: Satch: 13:36 13:36 13:36 13:36 13:36	Blank Step 2 75260 Dil Fac 3 3 3 3
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid	5227/5-B ^3 Re 75227/6-B ^5	MB M sult (ND ND ND	MB Qualifier		RL 15 7.5 2.3	ľ	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k	(g (g (g Clie	Clic D F 07/' 07/' 07/' 07/' 07/'	repared 2/23 08:00 2/23 08:00 2/23 08:00 2/23 08:00 mple ID:	Die ID: M Prep Prep E Analy 07/27/23 07/27/23 07/27/23 U2D Cor Prep	zed 13:36 13:36 13:36	Blank Step 2 75260 Dil Fac 3 3 3 3 ample Step 2
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871	5227/5-B ^3 Re 75227/6-B ^5	MB M sult C ND ND ND	MB Qualifier		RL 15 7.5 2.3	1	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k	(g (g (g Clie	Clic <u>P</u> <u>P</u> 07/- 07/- 07/- 07/- 07/-	repared 2/23 08:00 2/23 08:00 2/23 08:00 2/23 08:00 mple ID:	Die ID: M Prep Prep F Analy 07/27/23 07/27/23 07/27/23 Uab Con Prep Prep F	ethod Type: S Batch: 13:36 13:36 13:36 htrol Sa Type: S Batch:	Blank Step 2 75260 Dil Fac 3 3 3 3 ample Step 2 75260
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871	5227/5-B ^3 Re 75227/6-B ^5	MB M sult C ND ND ND	MB Qualifier	 Spike	RL 15 7.5 2.3	CS	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k	(g (g (g Clie	Clic <u>P</u> <u>P</u> 07/' 07/- 07/- 07/- 07/- 07/-	repared 2/23 08:00 2/23 08:00 2/23 08:00 mple ID:	Die ID: M Prep B Prep I 07/27/23 07/27/23 07/27/23 Lab Con Prep P Prep I %Rec	zed 13:36	Blank Step 2 75260 Dil Fac 3 3 3 3 ample Step 2 75260
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871 Analyte	5227/5-B ^3 Re 75227/6-B ^5	MB MB sult (ND ND ND	MB Qualifier	Spike Added	RL 15 7.5 2.3 L Res	r CS sult	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k LCS Qualifier	(g (g (g Clie Unit	Clic <u>P</u> <u>F</u> 07/' 07/' 07/' 07/' 07/'	repared 2/23 08:00 2/23 08:00 2/23 08:00 mple ID: %Rec	Die ID: M Prep B Prep I Analy 07/27/23 07/27/23 07/27/23 Lab Cor Prep B %Rec Limits	ethod Type: \$ Batch: 13:36 13:36 13:36 htrol Sa Type: \$ Batch:	Blank Step 2 75260 Dil Fac 3 3 3 3 3 3 ample Step 2 75260
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871 Analysis Batch: 75871 Analysis Batch: 75871 Iron	5227/5-B ^3 	MB M sult (ND ND ND	MB Qualifier	Spike Added 50.0	RL 15 7.5 2.3 L Res	CS sult	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k LCS Qualifier	(g (g Clie Unit mg/Kg	Clic <u>D</u> <u>F</u> 07/' 07/' 07/' 07/' 07/- <u>D</u>	repared 2/23 08:00 2/23 08:00 2/23 08:00 mple ID: <u>%Rec</u> 3	Analy 07/27/23 07/27/23 07/27/23 CAB COU Prep Prep F %Rec Limits	zed 13:36 13	Blank Step 2 75260 Dil Fac 3 3 3 3 3 3 ample Step 2 75260
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871 Analysis Batch: 75871 Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871 Lithium Lithium Lithium	5227/5-B ^3 75227/6-B ^5	MB M sult (ND ND ND	MB Qualifier	Spike Added 50.0 5.00	RL 15 7.5 2.3 L Res	CS sult ND .13	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k LCS Qualifier	kg kg Clie Unit mg/Kg mg/Kg	Clie <u>P</u> <u>P</u> 07/- 07/- 07/- 07/- nt Sa <u>P</u>	repared 2/23 08:00 2/23 08:00 2/23 08:00 2/23 08:00 mple ID: <u>%Rec</u> 3 103	Die ID: M Prep B Analy 07/27/23 07/27/23 07/27/23 Lab Con Prep B %Rec Limits 80 - 120	ethod Type: \$ Batch: 13:36 13:36 13:36 13:36 htrol Sa Type: \$ Batch:	Blank Step 2 75260 Dil Fac 3 3 3 3 3 3 ample Step 2 75260
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871 Analysis Batch: 75871 Analyte Iron Lithium Manganese	5227/5-B ^3 75227/6-B ^5	MB M sult C ND ND ND	MB Qualifier	Spike Added 50.0 5.00 5.00	RL 15 7.5 2.3 L Res 5 5 5	CS sult ND .13 .01	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k LCS Qualifier J	kg Kg Clie Unit mg/Kg mg/Kg mg/Kg	Clic <u>D</u> <u>F</u> 07/' 07/' 07/' 07/' nt Sa	repared 2/23 08:00 2/23 08:00 2/23 08:00 mple ID: <u>%Rec</u> 3 103 100	Die ID: M Prep Prep I Analy 07/27/23 07/27/23 07/27/23 Lab Con Prep I %Rec Limits 80 - 120 80 - 120	tethod Type: Satch: 13:36 13:36 13:36 trol Satch: Satch:	Blank Step 2 75260 Dil Fac 3 3 3 3 ample Step 2 75260
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871 Analysis Batch: 75871 Analyte Iron Lithium Manganese	5227/5-B ^3 75227/6-B ^5	MB M sult (ND ND ND	MB Qualifier	Spike Added 50.0 5.00 5.00	RL 15 7.5 2.3 L Res 5 5	CS sult ND .13 .01	MDL 8.7 mg/k 0.45 mg/k 0.84 mg/k LCS Qualifier	(g (g Clie <u>Unit</u> mg/Kg mg/Kg mg/Kg	Clic <u>D</u> <u>P</u> 07/' 07/' 07/' 07/' 07/- D	repared 2/23 08:00 2/23 08:00 2/23 08:00 mple ID: <u>%Rec</u> 3 103 100	Die ID: M Prep Prep I Analy 07/27/23 07/27/23 07/27/23 Lab Cor Prep I %Rec Limits 80 - 120 80 - 120	ethod Type: \$ Batch: 13:36 13:36 13:36 ntrol Sa Type: \$ Batch:	Blank Step 2 75260 Dil Fac 3 3 3 3 ample Step 2 75260
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871 Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCSD 140	5227/5-B ^3 75227/6-B ^5 	MB MB MD ND ND	MB Qualifier	Spike Added 50.0 5.00 5.00	RL 15 7.5 2.3 L Res 5 5	CS sult ND .13	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k LCS Qualifier J	kg Kg Clie Unit mg/Kg mg/Kg mg/Kg Client Sa	Clic <u>D</u> <u>F</u> 07/' 07/' 07/' 07/- nt Sa <u>D</u>	repared 2/23 08:00 2/23 08:00 2/23 08:00 mple ID: <u>%Rec</u> <u>3</u> 103 100 ID: Lab	Die ID: M Prep Prep I Analy 07/27/23 07/27/23 07/27/23 Lab Con Prep I %Rec Limits 80 - 120 80 - 120 Control	sample	Blank Step 2 75260 Dil Fac 3 3 3 3 3 ample Step 2 75260
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871 Analysis Batch: 75871 Analyse Iron Lithium Manganese Lab Sample ID: LCSD 140 Manganese Lab Sample ID: LCSD 140 Matrix: Solid	5227/5-B ^3 75227/6-B ^5 	MB M sult (ND ND	MB Qualifier	Spike Added 50.0 5.00 5.00	RL 15 7.5 2.3 L Res 5 5	CS sult ND .13 .01	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k LCS Qualifier J	kg Kg Clie Unit mg/Kg mg/Kg mg/Kg Client Sa	Clie <u>P</u> <u>F</u> 07/' 07/' 07/' nt Sa <u>D</u>	repared 2/23 08:00 2/23 08:00 2/23 08:00 2/23 08:00 mple ID:	Die ID: M Prep Prep I Analy 07/27/23 07/27/23 07/27/23 Lab Con Prep I %Rec Limits 80 - 120 80 - 120 Control Prep	Sample Satch: Satch: 13:36 13:	Blank Step 2 75260 Dil Fac 3 3 3 3 ample Step 2 75260
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871 Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75871	5227/5-B ^3 75227/6-B ^5 0-75227/7-B 4	MB M sult (ND ND	MB Qualifier	Spike Added 50.0 5.00 5.00	RL 15 7.5 2.3 L Res 5 5	CS sult ND .13 .01	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k LCS Qualifier J	kg kg Clie Unit mg/Kg mg/Kg mg/Kg Client Sa	Clie <u>P</u> <u>P</u> 07/- 07/	repared 2/23 08:00 2/23 08:00 2/23 08:00 2/23 08:00 mple ID:	Die ID: M Prep Prep I Analy 07/27/23 07/27/23 07/27/23 Lab Con Prep I %Rec Limits 80 - 120 80 - 120 Control Prep I	Sample Satch: Satch: Satch: Satch: Satch: Satch: Satch: Satch: Satch: Satch:	Blank Step 2 75260
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analyte Iron Lithium Manganese Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75871	5227/5-B ^3 75227/6-B ^5 0-75227/7-B 4	MB M sult C ND ND	MB Qualifier	Spike Added 50.0 5.00 5.00 Spike	RL 15 7.5 2.3 L Res 5 5 5	CS sult ND .13 .01	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k LCS Qualifier J	kg kg Clie Unit mg/Kg mg/Kg mg/Kg Client Sa	Clie D P 07/- 0	repared 2/23 08:00 2/23 08:00 2/23 08:00 2/23 08:00 mple ID: %Rec 3 103 100 ID: Lab	Die ID: M Prep Prep I Analy 07/27/23 07/27/23 07/27/23 Lab Con Prep I %Rec Limits 80 - 120 80 - 120 Control Prep I %Rec	Sample Satch: 22ed 13:36	Blank Step 2 75260
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Matrix: Solid Analyte Iron Lithium Manganese Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75871 Analysis Batch: 75871 Analysis Batch: 75871	5227/5-B ^3 Re 75227/6-B ^5 	MB M sult Q ND ND ND	MB Qualifier	Spike Added 50.0 5.00 5.00 Spike Added	RL 15 7.5 2.3 L Res 5 5 5 5 5 5 5 5 5 5 5 5 5	CS sult ND .13 .01	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k LCS Qualifier J LCSD Qualifier	G G Clie Unit mg/Kg mg/Kg mg/Kg Client Sa Unit	Clie D P 07/- 0	repared 2/23 08:00 2/23 08:00 2/23 08:00 2/23 08:00 mple ID: <u>%Rec</u> <u>3</u> 103 100 ID: Lab	ble ID: M Prep Prep E Analy 07/27/23 07/27/23 07/27/23 Lab Con Prep %Rec Limits 80 - 120 80 - 120 80 - 120 Control Prep E %Rec Limits	sample Satch: 2ed 13:36	Blank Step 2 75260 Dil Fac 3 3 3 3 ample Step 2 75260 e Dup Step 2 75260 RPD Limit
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871 Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75871 Analysis Batch: 75871 Analysis Batch: 75871 Analysis Batch: 75871	5227/5-B ^3 Re 75227/6-B ^5 	MB M sult (ND ND	MB Qualifier	Spike Added 50.0 5.00 5.00 5.00 5.00	RL 15 7.5 2.3 L Res 5 5 5	CS sult ND .13 .01	MDL Unit 8.7 mg/k 0.45 mg/k 0.84 mg/k LCS Qualifier J LCSD Qualifier	kg Kg Clie Unit mg/Kg mg/Kg Client Sa Unit mg/Kg	Clie D F 07/- 0	repared 2/23 08:00 2/23 08:00 2/23 08:00 2/23 08:00 mple ID: %Rec 3 103 100 ID: Lab %Rec 3 	ble ID: M Prep Prep E Analy 07/27/23 07/27/23 07/27/23 Uab Con Prep %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 Control Prep E %Rec Limits	ethod Type: \$ Batch: 13:36 13:36 13:36 13:36 Satch: Satch: Satch: Satch: Satch: Satch: Satch: Satch: Satch: 28	Blank Step 2 75260 Dil Fac 3 3 3 3 ample Step 2 75260 e Dup Step 2 75260 RPD Limit
Lab Sample ID: MB 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75871 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-7 Matrix: Solid Analyte Iron Lithium Manganese Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75871 Analysis Batch: 75871 Analysis Batch: 75871 Lithium	5227/5-B ^3 Re 75227/6-B ^5 	MB M sult (ND ND	MB Qualifier	Spike Added 50.0 5.00 5.00 5.00 5.00 5.00 5.00	RL 15 7.5 2.3 L Res 5 6 7 7 7 7 7 7 7 7 7 7 7 7	CS sult ND .13 .01 SD sult ND .95	MDL 8.7 mg/k 0.45 mg/k 0.84 mg/k LCS Qualifier J	Kg Kg Clie Unit mg/Kg mg/Kg mg/Kg Client Sa Unit mg/Kg mg/Kg	Clic <u>D</u> <u>F</u> 07/' 07/' 07/' 07/' nt Sa <u>D</u> ample <u>D</u>	repared 2/23 08:00 2/23 08:00 2/23 08:00 2/23 08:00 mple ID:	Bile ID: M Prep Prep I Analy 07/27/23 07/27/23 07/27/23 07/27/23 Control Prep %Rec Limits 80 - 120 Control Prep I %Rec Limits 80 - 120 Control Prep I %Rec Limits 80 - 120	ethod Type: \$ Batch: 13:36 13:36 13:36 htrol Sa Type: \$ Batch: Sample Sample Satch: 28 4	Blank Step 2 75260 Dil Fac 3 3 3 3 ample Step 2 75260 e Dup Step 2 75260 RPD Limit 30

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: 140-32513-	1 DU								Client	Sar	mpl	e ID: VEI	R-35 55-	60 202	30624
Matrix: Solid													Prep	Type:	Step 2
Analysis Batch: 75871													Prep E	Batch:	75260
	Sample	Sam	nple			DU	DU								RPD
Analyte	Result	Qua	lifier			Result	Qua	alifier	Unit		D			RPD	Limit
Iron	560					531			mg/Kg		¢			5	
Lithium	0.56	J				ND			mg/Kg		¢			NC	30
Manganese	29					27.9			mg/Kg		₽			4	30
Lab Sample ID: MB 140-752	274/5-B										Clie	ent Samp	ole ID: M	ethod	Blank
Matrix: Solid													Prep	Type:	Step 3
Analysis Batch: 75871													Prep E	Batch:	75294
Analista		MB	MB							_	_		A		D !! F
Analyte	K€	suit	Qualifier					Unit	~	<u> </u>	P	repared		zea	DIIFac
libium					5.U 2.5		2.9	mg/K	g		07/1	3/23 00:00	07/27/23	14:20	1
Manganasa	0.0		1		2.5	<i>.</i>	0.15	mg/K	y a		07/1	2/22 00.00	07/27/23	14.20	1
Manganese	0.0	1935	J		0.75	ι (J.UZ7	mg/ĸ	g		07/1	3/23 08:00	0//2//23	14.20	I
Lab Sample ID: LCS 140-75	274/6-B								Clie	ent	Sar	mple ID:	Lab Cor	ntrol S	ample
Matrix: Solid													Prep	Type:	Step 3
Analysis Batch: 75871				Omilia		1.00							Prep E	Batch:	75294
Apolyto				Spike		Booult		lifiar	Unit		_	% Baa	%Rec		
			·	50.0		51 Q	Qua	anner	ma/Ka			104	80 120		
Lithium				5 00		1 08			mg/Kg			104	80 120		
Manganese				5.00		5.04			ma/Ka			100	80 120		
				0.00		0.0.1							00-120		
Lab Sample ID: LCSD 140-7	75274/7-B							C	lient S	am	ple	ID: Lab	Control	Samp	le Dup
Matrix: Solid													Prep	Type:	Step 3
Analysis Batch: 75871													Prep E	Batch:	75294
				Spike		LCSD	LCS	SD					%Rec		RPD
Analyte				Added		Result	Qua	alifier	Unit		D	%Rec	Limits	RPD	Limit
Iron				50.0		49.5			mg/Kg			99	80 - 120	5	30
Lithium				5.00		4.82			mg/Kg			96	80 - 120	3	30
Manganese				5.00		4.89			mg/Kg			98	80 - 120	3	30
Lab Sample ID: 140-32513-	1 DU								Client	Sar	mpl	e ID: VEI	R-35 55-	60 202	30624
Matrix: Solid													Prep	Type:	Step 3
Analysis Batch: 75871													Prep E	Batch:	75294
	Sample	Sam	ple			DU	DU								RPD
Analyte	Result	Qua	lifier			Result	Qua	alifier	Unit		<u>D</u>			RPD	Limit
Iron	4300					4280			mg/Kg		¢			1	30
Lithium	0.52	J				0.516	J		mg/Kg		₽			1	30
Manganese	110	В				114			mg/Kg		¢			2	30
Lab Sample ID: MB 140-753	320/5-B										Clie	ent Samp	ole ID: M	ethod	Blank
Matrix: Solid													Prep	Type:	Step 4
Analysis Batch: 75894													Prep E	Batch:	75407
Anchite	-	MB	MR				MD.	1114		~	-		A I		
	Re	SUIT	Qualifier		KL				<u>a</u>	<u> </u>	P	7/22 00:00	Analy	12.25	
Lithium					0.U		2.9 0.15	mg/K	y		07/1	7/22 00:00	07/20/23	12.30	1
		IND			∠.⊃		0.15	IIIII/K			01/1	1123 00:00	01120123	12:00	1
Manganese		ND			0.75		0 12	ma/k	a		07/4	7/23 00.00	07/20/22	12.25	1

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID. LCS 140-75	320/6-B					Clie	nt Sai	nple ID:	Lab Cor	ntrol Sa	ample
Matrix: Solid									Prep	Type: S	Step 4
Analysis Batch: 75894									Prep E	Batch:	75407
			Spike	LCS	LCS		_		%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Iron			50.0	55.0		mg/Kg		110	80 - 120		
Lithium			5.00	5.38		mg/Kg		108	80 - 120		
Manganese			5.00	5.49		mg/Kg		110	80 - 120		
Lab Sample ID: LCSD 140-7	75320/7-B				(Client Sa	mple	ID: Lab	Control	Sample	e Dup
Matrix: Solid									Prep	Type: S	Step 4
Analysis Batch: 75894									Prep E	Batch:	75407
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron			50.0	54.6		mg/Kg		109	80 - 120	1	30
Lithium			5.00	5.41		mg/Kg		108	80 - 120	0	30
Manganese			5.00	5.45		mg/Kg		109	80 - 120	1	30
 						Client S	amal		D 25 55	co 202	20624
Matrix: Solid						Chefit 3	ampi		R-35 55- Dron	00 202. Type: 9	30024 Stop /
Analysis Batch: 75894									Dron F	Satch:	75407
Analysis Batch. 75054	Sample	Samnle		ווס	ווס				Fiehr	Jaten.	RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	п			RPD	Limit
Iron	20000	Quanner		19600	quanner	ma/Ka				4	30
Lithium	13			12.6		ma/Ka	т ň			3	30
Manganese	430			406		mg/Kg	¢			5	30
I ab Sample ID: MB 140-754							0			a tha d	
Matrix: Solid Analysis Batch: 75894	юо/э-в ~э						CIIE	ent Samp	Prep Prep E	Type: S Batch:	Blank Step 5 75487
Matrix: Solid Analysis Batch: 75894	юо/о-в ~о	MB MB	£1		MDL 11-34		CIIE	ent Samp	Prep Prep E	Type: Satch:	Blank Step 5 75487
Matrix: Solid Analysis Batch: 75894	Res	MB MB sult Quali	fier		MDL Unit	I		repared	Prep Prep E Analy	zed	Blank Step 5 75487 Dil Fac
Matrix: Solid Analysis Batch: 75894 Analyte Iron		MB MB sult Quali	fier	RL 75	MDL Unit	I	D P 07/1	repared 9/23 08:00	Prep Prep E Analy 07/28/23	zed	Blank Step 5 75487 Dil Fac 5
Matrix: Solid Analysis Batch: 75894 Iron Lithium	юо/о-ы ~о Res	MB MB sult Quali ND ND	fier	RL 75 38	MDL Unit 44 mg/k 2.2 mg/k	I [g [g	D P 07/1 07/1	repared 9/23 08:00 9/23 08:00	Analy 07/28/23 07/28/23 07/28/23	zed 13:24	Step 5 75487 Dil Fac 5 5
Matrix: Solid Analysis Batch: 75894 Iron Lithium Manganese	юо/о-ыо Res	MB MB sult Quali ND ND ND	fier	RL 75 38 11	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k	g g g	D P 07/1 07/1 07/1	repared 9/23 08:00 9/23 08:00 9/23 08:00	Analy 07/28/23 07/28/23	zed 13:24 13:24 13:24	Blank Step 5 75487 Dil Fac 5 5 5 5
Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-75	коо/5-Б **5 Res 6406/6-В ^5	MB MB sult Quali ND ND ND	fier	RL 75 38 11	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k	g g g Clie	D P 07/1 07/1 07/1 07/1	repared 9/23 08:00 9/23 08:00 9/23 08:00 mple ID:	Analy 07/28/23 07/28/23 07/28/23 07/28/23 D7/28/23 D7/28/23	zed 13:24 13:24 13:24 13:24	Dil Fac 5 5 5 5 5 5 5
Matrix: Solid Analysis Batch: 75894 Iron Lithium Manganese Lab Sample ID: LCS 140-75 Matrix: Solid	ноо/5-в ~5 Res 6406/6-В ^5	MB MB sult Quali ND ND ND	fier	RL 75 38 11	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k	ig g g Clie	D P 07/1 07/1 07/1 07/1	repared 9/23 08:00 9/23 08:00 9/23 08:00 mple ID:	Analy 07/28/23 07/28/23 07/28/23 07/28/23 Prep	zed 13:24 13:24 13:24 13:24 13:24 13:24	Blank Step 5 75487 Dil Fac 5 5 5 5 5 5 5 5 5 5 5 5
Matrix: Solid Analysis Batch: 75894 Iron Lithium Manganese Lab Sample ID: LCS 140-75 Matrix: Solid Analysis Batch: 75894	ноо/5-в ~5 Res 5406/6-В ^5	MB MB sult Quali ND ND ND	fier	RL 75 38 11	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k	g g g Clie	D P 07/1 07/1 07/1 07/1	repared 9/23 08:00 9/23 08:00 9/23 08:00 9/23 08:00 mple ID:	Analy 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 DPrep Prep Prep	trol Satch: Satc	Blank Step 5 75487 Dil Fac 5 5 5 5 ample Step 5 75487
Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-75 Matrix: Solid Analysis Batch: 75894	коо/5-Б **5 Res 6406/6-В ^5	MB MB sult Quali ND ND ND	fier	RL 75 38 11	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k	g g g Clie	D P 07/1 07/1 07/1 07/1	repared 9/23 08:00 9/23 08:00 9/23 08:00 9/23 08:00 mple ID:	Analy. 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 Prep Prep Prep Wrep Prep Prep Wrep Wrep Wrep Wrep Wrep Wrep	Type: \$ Batch: 1 13:24 1 13:25 1 13:26 1 13:27 1 13:28 1 13:29 1 13:29 1 13:29 1 13:29 1 14:10 1 15:10 1 16:10 <t< td=""><td>Blank Step 5 75487 Dil Fac 5 5 5 5 ample Step 5 75487</td></t<>	Blank Step 5 75487 Dil Fac 5 5 5 5 ample Step 5 75487
Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-75 Matrix: Solid Analysis Batch: 75894 Analysis Batch: 75894 Analysis Batch: 75894	коо/5-в **5 Res 5406/6-В ^5	MB MB sult Quali ND ND ND	fier Spike Added	RL 75 38 11 LCS Result	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k LCS Qualifier	g g g Clie	D P 07/1 07/1 07/1 07/1 07/1	repared 9/23 08:00 9/23 08:00 9/23 08:00 mple ID:	Analy 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 Lab Con Prep Prep E %Rec Limits	Image: second	Blank Step 5 75487 Dil Fac 5 5 5 5 ample Step 5 75487
Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-75 Matrix: Solid Analysis Batch: 75894 Analysis Batch: 75894 Analysis Batch: 75894	коо/5-Б **5 Res 5406/6-В ^5	MB MB sult Quali ND ND ND	fier Spike Added 150	RL 75 38 11 LCS Result ND 10	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k LCS Qualifier	g g Clie Unit mg/Kg	D P 07/1 07/1 07/1 07/1 07/1 07/1	repared 9/23 08:00 9/23 08:00 9/23 08:00 mple ID: <u>%Rec</u> -0.07	Analy 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 Uab Con Prep Prep E %Rec Limits	Type: \$ 3atch: 1 13:24 1 13:25 1 14:10 1 15:26 1 16:27 1 17:28 1 18:29 1 19:29 1 19:29 1 19:29 1 19:29 1 19:29 <t< td=""><td>Blank Step 5 75487 Dil Fac 5 5 5 ample Step 5 75487</td></t<>	Blank Step 5 75487 Dil Fac 5 5 5 ample Step 5 75487
Matrix: Solid Analysis Batch: 75894 Iron Lithium Manganese Lab Sample ID: LCS 140-75 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium	коо/5-Б **5 Res 6406/6-В ^5	MB MB sult Quali ND ND ND	fier Spike 	RL 75 38 11 LCS Result ND 16.9	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k LCS Qualifier	g g Clie <u>Unit</u> mg/Kg mg/Kg	D P 07/1 07/1 07/1 07/1 07/1 07/1	repared 9/23 08:00 9/23 08:00 9/23 08:00 mple ID: -0.07 112	Analy 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 D7/28/23 D7/28/23 D7/28/23 D7/28/23 D7/28/23 Lab Con Prep Prep E %Rec Limits 80 - 150	Type: S Jatch: 1 13:24 1 13:24 1 Type: S Atrol Sa Satch: Satch: 1	Blank Step 5 75487 Dil Fac 5 5 ample Step 5 75487
Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-75 Matrix: Solid Analysis Batch: 75894 Analysis Batch: 75894 Analyse Iron Lithium Manganese	кио/5-Б **5 Res 5406/6-В ^5	MB MB sult Quali ND ND ND	fier Spike Added 150 15.0 15.0	RL 75 38 11 LCS Result ND 16.9 3.96	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k LCS Qualifier J J	g g Clie <u>Unit</u> mg/Kg mg/Kg	D P 07/1 07/1 07/1 07/1 07/1 07/1	repared 9/23 08:00 9/23 08:00 9/23 08:00 mple ID: -0.07 112 26	Analy. 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 Lab Cor Prep Prep E %Rec Limits 80 - 150 1 - 60	zed 13:24 13:24 13:24 strol Sa Type: Satch: 1	Blank Step 5 75487 Dil Fac 5 5 5 ample Step 5 75487
Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-75 Matrix: Solid Analysis Batch: 75894 Analysis Batch: 75894 Analysis Batch: 75894 Lithium Manganese Lab Sample ID: LCSD 140-7 Manganese Lab Sample ID: LCSD 140-7 Matrix: Solid	коо/5-Б **5 Res 6406/6-В ^5 75406/7-В ^	MB MB sult Quali ND ND ND	fier Spike Added 150 15.0 15.0	RL 75 38 11 LCS Result ND 16.9 3.96	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k LCS Qualifier J J	g g Clied Unit mg/Kg mg/Kg mg/Kg Client Sa	D P 07/1 07/1 07/1 07/1 07/1 07/1 07/1	repared 9/23 08:00 9/23 08:00 9/23 08:00 mple ID: <u>%Rec</u> -0.07 112 26 ID: Lab	Analy. 07/28/23 07/28/23 07/28/23 07/28/23 Lab Cor Prep Prep %Rec Limits 80 - 150 1 - 60 Control Prep	Sample Sample Sample Sample Sample Type: S	Blank Step 5 75487 Dil Fac 5 5 5 ample Step 5 75487
Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-75 Matrix: Solid Analysis Batch: 75894 Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCSD 140-7 Matrix: Solid Analysis Batch: 75894	коо/5-Б **5 Res 6406/6-В ^5 75406/7-В ^	MB MB sult Quali ND ND	fier Spike Added 150 15.0 15.0	RL 75 38 11 LCS Result ND 16.9 3.96	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k LCS Qualifier J J	ig ig Clied Unit mg/Kg mg/Kg mg/Kg Client Sa	D P 07/1 07/1 07/1 07/1 07/1 07/1 07/1	repared 9/23 08:00 9/23 08:00 9/23 08:00 mple ID: <u>%Rec</u> -0.07 112 26 ID: Lab	Analy 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 Drep Prep Prep %Rec Limits 80 - 150 1 - 60 Control Prep Prep	Sample Satch: 1 2zed 13:24 14 14 14 14 14 14 14 14 14 14 14 14 14	Blank Step 5 75487 Dil Fac 5 5 5 ample Step 5 75487
Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-75 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-75 Matrix: Solid Analyte Iron Lithium Manganese Lab Sample ID: LCSD 140-7 Matrix: Solid Analysis Batch: 75894	коо/5-Б **5 Res 406/6-В ^5 75406/7-В ^	MB MB sult Quali ND ND	fier Spike Added 150 15.0 15.0 5pike	RL 75 38 11 LCS Result ND 16.9 3.96 LCSD	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k LCS Qualifier J J	ig ig Clie Unit mg/Kg mg/Kg mg/Kg Client Sa	D P 07/1 07/1 07/1 07/1 07/1 07/1	repared 9/23 08:00 9/23 08:00 9/23 08:00 mple ID: <u>%Rec</u> -0.07 112 26 ID: Lab	Analy 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 Lab Corr Prep E %Rec Limits 80 - 150 1 - 60 Control Prep E %Rec	Sample Satch: 1 2zed 13:24 14 14 14 14 14 14 14 14 14 14 14 14 14	Blank Step 5 75487 Dil Fac 5 5 5 ample Step 5 75487 RPD
Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-75 Matrix: Solid Analysis Batch: 75894 Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCSD 140-7 Matrix: Solid Analysis Batch: 75894	коо/5-Б **5 Res 406/6-В ^5 75406/7-В ^	MB MB sult Quali ND ND ND	fier Spike Added 150 15.0 15.0 Spike Added	RL 75 38 11 LCS Result ND 16.9 3.96 LCSD Result	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k LCS Qualifier J J J	g G Client Mait mg/Kg mg/Kg mg/Kg Client Sa	D P 07/1 07/1 07/1 07/1 07/1 07/1 07/1 07/1	repared 9/23 08:00 9/23 08:00 9/23 08:00 mple ID: <u>%Rec</u> 1D: Lab	Analy 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 Lab Con Prep %Rec Limits 80 - 150 1 - 60 Control Prep %Rec Limits	Sample Satch: ' 2zed 13:24 14 14 14 14 14 14 14 14 14 14 14 14 14	Blank Step 5 75487 Dil Fac 5 5 5 ample Step 5 75487 RPD Limit
Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-75 Matrix: Solid Analysis Batch: 75894 Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCSD 140-7 Matrix: Solid Analysis Batch: 75894	коо/5-Б **5 Res 5406/6-В ^5 75406/7-В ^	MB MB sult Quali ND ND ND	fier Spike Added 150 15.0 15.0 Spike Added 150	RL 75 38 11 LCS Result ND 16.9 3.96 LCSD Result ND 16.9 3.96	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k LCS Qualifier J J	g g g Client mg/Kg mg/Kg client Sa	D P 07/1 07/1 07/1 07/1 07/1 07/1 07/1 07/1	mepared 9/23 08:00 9/23 08:00 9/23 08:00 9/23 08:00 mple ID: %Rec -0.07 112 26 ID: Lab %Rec -0.5	Analy Prep E Analy 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 Lab Con Prep E %Rec Limits 80 - 150 1 - 60 Control Prep E %Rec Limits	zed 13:24 13:24 13:24 13:24 strol Sa Type: Satch: 1	Blank Step 5 75487 Dil Fac 5 5 5 ample Step 5 75487 RPD Limit
Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: LCS 140-75 Matrix: Solid Analysis Batch: 75894 Analysis Batch: 75894 Analyte Iron Lithium Maganese Lab Sample ID: LCSD 140-7 Matrix: Solid Analysis Batch: 75894 Analysis Batch: 75894 Analysis Batch: 75894 Analysis Batch: 75894 Analyte Iron Lithium	коо/5-Б **5 Res 6406/6-В ^5 75406/7-В ^	MB MB sult Quali ND ND ND	fier Spike Added 150 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	RL 75 38 11 LCS Result ND 16.9 3.96 LCSD Result ND 16.7	MDL Unit 44 mg/k 2.2 mg/k 1.9 mg/k LCS Qualifier J J J	g g g Clie mg/Kg mg/Kg mg/Kg Client Sa	D P 07/1 07/1 07/1 07/1 07/1 07/1 07/1 07/1	repared 9/23 08:00 9/23 08:00 9/23 08:00 9/23 08:00 mple ID: 112 26 ID: Lab <u>%Rec</u> -0.5 111	Analy 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 07/28/23 Lab Con Prep Prep E %Rec Limits 80 - 150 1 - 60 Control Prep E %Rec Limits 80 - 150 %Rec Limits 80 - 150 1.50	zed 13:24 13:24 13:24 13:24 strol Sa Type: Satch: 1	Blank Step 5 75487 Dil Fac 5 5 5 ample Step 5 75487 RPD Limit 30

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: 140-32513	-1 DU								Client S	Samp	IE ID: VEI	R-35 55-	60 202	30624
Matrix: Solid												Prep	Type:	Step 5
Analysis Batch: 75894												Prep I	Batch:	75487
	Sample	Samp	le			DU	DU							RPD
Analyte	Result	Quali	fier			Result	Qua	lifier	Unit	D			RPD	Limit
Iron	ND					ND			mg/Kg	¢			NC	
Lithium	4.1	J				4.21	J		mg/Kg	☆			2	30
Manganese	46					40.0			mg/Kg	☆			14	30
Lab Sample ID: MB 140-75	5511/5-A									Cli	ent Samr	ole ID: N	lethod	Blank
Matrix: Solid												Prep	Type:	Step 6
Analysis Batch: 75894												Prep	Batch:	75511
-		MB N	ИВ											
Analyte	Re	esult C	Qualifier		RL		MDL	Unit	l	D F	Prepared	Analy	zed	Dil Fac
Iron		ND			5.0		2.9	mg/K	g	07/	19/23 08:00	07/28/23	14:14	1
Lithium		ND			2.5		0.15	mg/K	g	07/ ⁻	19/23 08:00	07/28/23	14:14	1
Manganese		ND			0.75		0.25	mg/K	g	07/	19/23 08:00	07/28/23	14:14	1
Lab Sample ID: LCS 140-7	′5511/6-A								Clie	nt Sa	mple ID:	Lab Co	ntrol S	ample
Matrix: Solid												Prep	Type:	Step 6
Analysis Batch: 75894												Prep	Batch:	75511
-				Spike		LCS	LCS	;				%Rec		
Analyte				Added		Result	Qua	lifier	Unit	D	%Rec	Limits		
Iron				50.0		54.8			mg/Kg		110	80 - 120		
Lithium				5.00		5.27			mg/Kg		105	80 - 120		
Manganese				5.00		5.47			mg/Kg		109	80 - 120		
Lab Sample ID: LCSD 140	75511/7 8								liont Sa	molo		Control	Sampl	
Lab Sample ID: LCSD 140	-75511/7-A							C	lient Sa	ample	ID: Lab	Control	Sampl	e Dup Stop 6
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894	-75511/7-A							C	Client Sa	ample	ID: Lab	Control Prep	Sampl Type: S	e Dup Step 6
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894	-75511/7-A			Spike		LCSD	LCS	C	lient Sa	ample	ID: Lab	Control Prep Prep %Rec	Sampl Type: \$ Batch:	e Dup Step 6 75511 RPD
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte	-75511/7-A			Spike Added		LCSD Result	LCS Qua	C D lifier	Unit	ample	B ID: Lab	Control Prep Prep %Rec Limits	Sampl Type: \$ Batch: RPD	e Dup Step 6 75511 RPD Limit
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron	-75511/7-A			Spike Added 50.0		LCSD Result	LCS Qua	D lifier	Unit	ample	• ID: Lab	Control Prep Prep %Rec Limits 80 - 120	Sampl Type: \$ Batch: 	e Dup Step 6 75511 RPD Limit 30
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium	-75511/7-A			Spike Added 50.0 5.00		LCSD Result 50.7 4.89	LCS Qua	D lifier	Unit mg/Kg mg/Kg	ample	• ID: Lab • • • • • • • • • • • • • • • • • • •	Control Prep %Rec Limits 80 - 120 80 - 120	Sampl Type: S Batch: RPD 8 7	e Dup Step 6 75511 RPD Limit 30 30
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese	-75511/7-A			Spike Added 50.0 5.00 5.00		LCSD Result 50.7 4.89 5.06	LCS Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg	ample D	%Rec 101 98 101	Control Prep Prep %Rec Limits 80 - 120 80 - 120 80 - 120	Sampl Type: S Batch: RPD 8 7 8	e Dup Step 6 75511 RPD Limit 30 30 30
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese	-75511/7-A			Spike Added 50.0 5.00 5.00		LCSD Result 50.7 4.89 5.06	LCS Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg	ample	%Rec 101 98 101	Control Prep %Rec Limits 80 - 120 80 - 120 80 - 120	Sampl Type: S Batch: RPD 8 7 8	e Dup Step 6 75511 RPD Limit 30 30 30
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513	-75511/7-A			Spike Added 50.0 5.00 5.00		LCSD Result 50.7 4.89 5.06	LCS Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg Client S	ample D Samp	MRec 101 98 101 98 101	Control Prep %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120	Sampl Type: 5 Batch: <u>RPD</u> 8 7 8 60 202	e Dup Step 6 75511 RPD Limit 30 30 30 30 30624
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid	-75511/7-A			Spike Added 50.0 5.00 5.00		LCSD Result 50.7 4.89 5.06	LCS Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg Client S	ample D Samp	MRec 101 98 101 98 101	Control Prep Prep %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	Sampl Type: 3 Batch: <u>RPD</u> 8 7 8 60 202 Type: 3	e Dup Step 6 75511 RPD Limit 30 30 30 30 624 Step 6
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid Analysis Batch: 75894	-75511/7-A			Spike Added 50.0 5.00 5.00		LCSD Result 50.7 4.89 5.06	LCS Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg Client S	ample D Samp	WRec 101 98 101 98 101	Control Prep Prep %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 R-35 55- Prep Prep	Sampl Type: S Batch:	e Dup Step 6 75511 RPD Limit 30 30 30 30 30 624 Step 6 75511
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid Analysis Batch: 75894	-75511/7-A	Samp		Spike Added 50.0 5.00 5.00		LCSD Result 50.7 4.89 5.06	LCS Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg Client S	ample D Samp	%Rec 101 98 101 98 101	Control Prep %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 R-35 55- Prep Prep	Sampl Type: S Batch:	e Dup Step 6 75511 RPD Limit 30 30 30 30 30 30 624 Step 6 75511 RPD
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid Analysis Batch: 75894 Analyte	-75511/7-A -1 DU Sample Result	Samp Qualit	le fier	Spike Added 50.0 5.00 5.00		LCSD Result 50.7 4.89 5.06 DU Result	LCS Qua DU Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg Client S	ample D Samp	MRec 101 98 101 98 101	Control Prep %Rec Limits 80 - 120 80 - 120 80 - 120 R-35 55- Prep Prep	Sampl Type: S Batch: RPD 8 7 8 60 202 Type: S Batch: Batch:	e Dup Step 6 75511 RPD Limit 30 30 30 30 30 30 30 624 Step 6 75511 RPD Limit
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid Analysis Batch: 75894 Analyte Iron	-75511/7-A 	Samp Qualit	le fier	Spike Added 50.0 5.00 5.00		LCSD Result 50.7 4.89 5.06 DU Result 10600	LCS Qua DU Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg Client S	ample D Sample D	• ID: Lab • MRec 101 98 101 98 101 98 101	Control Prep Prep %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 R-35 55- Prep Prep	Sampl Type: 3 Batch:	e Dup Step 6 75511 RPD Limit 30 30 30 30 30 30 6 24 Step 6 75511 RPD Limit 30 20
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid Analysis Batch: 75894	-75511/7-A B-1 DU Sample Result 11000 13 120	Samp Qualit	le fier	Spike Added 50.0 5.00 5.00		LCSD Result 50.7 4.89 5.06 DU Result 10600 12.7	LCS Qua DU Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg Client S	ample	MRec 101 98 101 98 101	Control Prep Prep %Rec Limits 80 - 120 80 - 120	Sampl Type: 3 Batch:	e Dup Step 6 75511 RPD Limit 30 30 30 30 30 624 Step 6 75511 RPD Limit 30 30 30 20
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese	-75511/7-A 	Samp Qualit	le fier	Spike Added 50.0 5.00 5.00		LCSD Result 50.7 4.89 5.06 DU Result 10600 12.7 127	LCS Qua DU Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg Client S Unit mg/Kg mg/Kg	Sample	• ID: Lab • MRec 101 98 101 98 101 e ID: VEI	Control Prep Prep %Rec Limits 80 - 120 80 - 120	Sampl Type: 3 Batch:	e Dup Step 6 75511 RPD Limit 30 30 30 30 30 624 Step 6 75511 RPD Limit 30 30 30 30 30
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: MB 140-75	-75511/7-A 	Samp Qualit	le fier	Spike Added 50.0 5.00 5.00		LCSD Result 50.7 4.89 5.06 DU Result 10600 12.7 127	LCS Qua DU Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg Client S Unit mg/Kg mg/Kg mg/Kg	Sample	"ID: Lab "Rec 101 98 102 103 104 105 105 106 107 108 109 109 101 102 </td <td>Control Prep Prep %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 R-35 55- Prep Prep</td> <td>Sampl Type: S Batch:</td> <td>e Dup Step 6 75511 RPD Limit 30 30 30 30 30 30 30 30 30 5511 RPD Limit 30 30 30 30 8 Blank</td>	Control Prep Prep %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 R-35 55- Prep Prep	Sampl Type: S Batch:	e Dup Step 6 75511 RPD Limit 30 30 30 30 30 30 30 30 30 5511 RPD Limit 30 30 30 30 8 Blank
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid Analysis Batch: 75894 Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: MB 140-75 Matrix: Solid	-75511/7-A 	Samp Qualit	le fier	Spike Added 50.0 5.00 5.00		LCSD Result 50.7 4.89 5.06 DU Result 10600 12.7 127	LCS Qua DU Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg Client S Unit mg/Kg mg/Kg mg/Kg	Sample	• ID: Lab • MRec 101 98 102 98 103 104 105 105 106 107 108 109 109 100	Control Prep Prep %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 R-35 55- Prep Prep	Sampl Type: 3 Batch: Batch:	e Dup Step 6 75511 RPD Limit 30 30 30 30 30 30 30 30 30 30
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid Analysis Batch: 75894 Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: MB 140-75 Matrix: Solid Analysis Batch: 75976	-75511/7-A 	Samp Qualit	le fier	Spike Added 50.0 5.00		LCSD Result 50.7 4.89 5.06 DU Result 10600 12.7 127	LCS Qua DU Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg Client S Unit mg/Kg mg/Kg mg/Kg	Sample	• ID: Lab • MRec 101 98 101 98 101 He ID: VEI	Control Prep Prep %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 R-35 55- Prep Prep	Sampl Type: S Batch:	e Dup Step 6 75511 RPD Limit 30 30 30 30 30 30 30 30 30 30
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid Analysis Batch: 75894 Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: MB 140-75 Matrix: Solid Analysis Batch: 75976	-75511/7-A 	Samp Qualit	le fier	Spike Added 50.0 5.00		LCSD Result 50.7 4.89 5.06 DU Result 10600 12.7 127	LCS Qua DU Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg Client S Unit mg/Kg mg/Kg mg/Kg	Sample D Clie	• ID: Lab • MRec 101 98 102 99 103 104 105 105 <td>Control Prep Prep %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 R-35 55- Prep Prep Prep</td> <td>Sampl Type: 3 Batch: 8 7 8 60 202 Type: 3 Batch: <u>RPD</u> 4 4 2 lethod Type: 3 Batch:</td> <td>e Dup Step 6 75511 RPD Limit 30 30 30 30 30 30 30 30 30 30</td>	Control Prep Prep %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 R-35 55- Prep Prep Prep	Sampl Type: 3 Batch: 8 7 8 60 202 Type: 3 Batch: <u>RPD</u> 4 4 2 lethod Type: 3 Batch:	e Dup Step 6 75511 RPD Limit 30 30 30 30 30 30 30 30 30 30
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid Analyte Iron Lithium Manganese Lab Sample ID: MB 140-75 Matrix: Solid Analysis Batch: 75976 Analyte	-75511/7-A 	Samp Qualit MB M esult C	le fier MB Qualifier	Spike Added 50.0 5.00 5.00		LCSD Result 50.7 4.89 5.06 DU Result 10600 12.7 127	LCS Qua DU Qua	D lifier	Unit mg/Kg mg/Kg mg/Kg Client S Unit mg/Kg mg/Kg mg/Kg	Sample D Cliv D F	• ID: Lab • MRec 101 98 101 98 101 ent Samp Prepared	Control Prep Prep %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 87 Prep Prep Prep I	Sampl Type: 3 Batch:	e Dup Step 6 75511 RPD Limit 30 30 30 30 30 30 30 30 30 30
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid Analyte Iron Lithium Matrix: Solid Analyte Iron Lithium Manganese Lab Sample ID: MB 140-75 Matrix: Solid Analyte Iron Lithium Manganese Lab Sample ID: MB 140-75 Matrix: Solid Analysis Batch: 75976 Analyte Iron	-75511/7-A 	Samp Qualit MB M esult C ND	le fier MB Qualifier	Spike Added 50.0 5.00 5.00		LCSD Result 50.7 4.89 5.06 DU Result 10600 12.7 127	LCS Qua DU Qua	Ilifier Unit mg/K	Unit mg/Kg mg/Kg mg/Kg Client S Unit mg/Kg mg/Kg mg/Kg	Sample D Clie D Clie	• ID: Lab • NRec 101 98 102 103 104 105 105 106 </td <td>Control Prep Prep %Rec Limits 80 - 120 80 - 120</td> <td>Sampl Type: 3 Batch: RPD 8 7 8 60 202 Type: 3 Batch: RPD 4 4 2 Batch: Satch: 2 Batch: 12:16</td> <td>e Dup Step 6 75511 RPD Limit 30 30 30 30 30 30 30 30 30 30</td>	Control Prep Prep %Rec Limits 80 - 120 80 - 120	Sampl Type: 3 Batch: RPD 8 7 8 60 202 Type: 3 Batch: RPD 4 4 2 Batch: Satch: 2 Batch: 12:16	e Dup Step 6 75511 RPD Limit 30 30 30 30 30 30 30 30 30 30
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75894 Analyte Iron Lithium Manganese Lab Sample ID: 140-32513 Matrix: Solid Analyte Iron Lithium Matrix: Solid Analyte Iron Lithium Maganese Lab Sample ID: MB 140-75 Matrix: Solid Analysis Batch: 75976 Analyte Iron Lithium Matrix: Solid Analysis Batch: 75976 Analyte Iron Lithium	-75511/7-A 	Samp Qualit MB M esult C ND	le fier MΒ Qualifier	Spike Added 50.0 5.00	RL 5.0 2.5	LCSD Result 50.7 4.89 5.06 DU Result 10600 12.7 127	LCS Qua DU Qua MDL 4.1 0.15	Unit mg/K mg/K	Unit mg/Kg mg/Kg mg/Kg Client S Unit mg/Kg mg/Kg mg/Kg mg/Kg	D D Samp D X Clin O P O O O	• ID: Lab • NRec 101 98 101 102 103 104 105 105 106 107 108 109	Control Prep Prep %Rec Limits 80 - 120 80 - 120 80 - 120 R-35 55- Prep Prep Prep I Ole ID: N Prep Prep I Analy 07/31/23 07/31/23	Sampl Type: 3 Batch: RPD 8 7 8 60 202 Type: 3 Batch: RPD 4 4 2 Batch: 2 Batch: 2 Batch: 12:16	e Dup Step 6 75511 RPD Limit 30 30 30 30 30 30 30 30 30 30

Lithium

Manganese

9

3

30

30

Method: 6010B SEP - SEP Metals (ICP) (Continued)

15

31

Lab Sample ID: LCS 140-7 Matrix: Solid Analysis Batch: 75976		Client Sample ID: Lab Control Samp Prep Type: Step Prep Batch: 7550									
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Iron			50.0	54.2		mg/Kg		108	80 - 120		
Lithium			5.00	5.37		mg/Kg		107	80 - 120		
Manganese			5.00	5.35		mg/Kg		107	80 - 120		
Lab Sample ID: LCSD 140 Matrix: Solid Analysis Batch: 75976	-75565/7-A				C	Client Sa	mple	ID: Lat	Control S Prep Prep E	Sample Type: S Batch: 7	e Dup Step 7 75565
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron			50.0	54.0		mg/Kg		108	80 - 120	0	30
Lithium			5.00	5.29		mg/Kg		106	80 - 120	2	30
Manganese			5.00	5.30		mg/Kg		106	80 - 120	1	30
Lab Sample ID: 140-32513 Matrix: Solid Analysis Batch: 75976	-1 DU					Client S	Sample	e ID: VI	ER-35 55-(Prep ⁻ Prep B	60 2023 Type: S Batch: 7	30624 Step 7 75565
	Sample	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Iron	4300			4610		mg/Kg	¢			6	30

16.0

32.3

mg/Kg

mg/Kg

₽

₽
Client Sample ID

Method Blank

Lab Control Sample

Client Sample ID

Method Blank

Lab Control Sample

VER-35 55-60 20230624

VER-35 60-63 20230624

VER-70 75-80 20230623

Lab Control Sample Dup

VER-35 55-60 20230624

VER-35 55-60 20230624

VER-35 60-63 20230624

VER-70 75-80 20230623

Lab Control Sample Dup VER-35 55-60 20230624

Metals

140-32513-1

140-32513-2

140-32513-3

SEP Batch: 75184

MB 140-75184/5-B ^4

LCS 140-75184/6-B ^5

140-32513-1 DU

Lab Sample ID

140-32513-1

140-32513-2

140-32513-3

MB 140-75187/5-A

LCS 140-75187/6-A

140-32513-1 DU

LCSD 140-75187/7-A

Prep Batch: 75187

LCSD 140-75184/7-B ^5

QC Association Summary

Prep Type

Step 1

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Job ID: 140-32513-1

Prep Batch

Exchangeable Exchangeable Exchangeable Exchangeable Method Prep Batch Total Total Total Total Total Total

Method

Exchangeable

Exchangeable

Exchangeable

mounou	i i op Baton	
Total		

Prep Batch: 75207

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 1	Solid	3010A	75184
140-32513-2	VER-35 60-63 20230624	Step 1	Solid	3010A	75184
140-32513-3	VER-70 75-80 20230623	Step 1	Solid	3010A	75184
MB 140-75184/5-B ^4	Method Blank	Step 1	Solid	3010A	75184
LCS 140-75184/6-B ^5	Lab Control Sample	Step 1	Solid	3010A	75184
LCSD 140-75184/7-B ^5	Lab Control Sample Dup	Step 1	Solid	3010A	75184
140-32513-1 DU	VER-35 55-60 20230624	Step 1	Solid	3010A	75184

SEP Batch: 75227

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 2	Solid	Carbonate	
140-32513-2	VER-35 60-63 20230624	Step 2	Solid	Carbonate	
140-32513-3	VER-70 75-80 20230623	Step 2	Solid	Carbonate	
MB 140-75227/5-B ^3	Method Blank	Step 2	Solid	Carbonate	
LCS 140-75227/6-B ^5	Lab Control Sample	Step 2	Solid	Carbonate	
LCSD 140-75227/7-B ^5	Lab Control Sample Dup	Step 2	Solid	Carbonate	
140-32513-1 DU	VER-35 55-60 20230624	Step 2	Solid	Carbonate	

Prep Batch: 75260

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 2	Solid	3010A	75227
140-32513-2	VER-35 60-63 20230624	Step 2	Solid	3010A	75227
140-32513-3	VER-70 75-80 20230623	Step 2	Solid	3010A	75227
MB 140-75227/5-B ^3	Method Blank	Step 2	Solid	3010A	75227
LCS 140-75227/6-B ^5	Lab Control Sample	Step 2	Solid	3010A	75227
LCSD 140-75227/7-B ^5	Lab Control Sample Dup	Step 2	Solid	3010A	75227
140-32513-1 DU	VER-35 55-60 20230624	Step 2	Solid	3010A	75227

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 3	Solid	Non-Crystalline	

Metals (Continued)

SEP Batch: 75274 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
140-32513-2	VER-35 60-63 20230624	Step 3	Solid	Non-Crystalline
140-32513-3	VER-70 75-80 20230623	Step 3	Solid	Non-Crystalline
MB 140-75274/5-B	Method Blank	Step 3	Solid	Non-Crystalline
LCS 140-75274/6-B	Lab Control Sample	Step 3	Solid	Non-Crystalline
LCSD 140-75274/7-B	Lab Control Sample Dup	Step 3	Solid	Non-Crystalline
140-32513-1 DU	VER-35 55-60 20230624	Step 3	Solid	Non-Crystalline

Prep Batch: 75294

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 3	Solid	3010A	75274
140-32513-2	VER-35 60-63 20230624	Step 3	Solid	3010A	75274
140-32513-3	VER-70 75-80 20230623	Step 3	Solid	3010A	75274
MB 140-75274/5-B	Method Blank	Step 3	Solid	3010A	75274
LCS 140-75274/6-B	Lab Control Sample	Step 3	Solid	3010A	75274
LCSD 140-75274/7-B	Lab Control Sample Dup	Step 3	Solid	3010A	75274
140-32513-1 DU	VER-35 55-60 20230624	Step 3	Solid	3010A	75274

SEP Batch: 75320

Г

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 4	Solid	Metal Hydroxide	
140-32513-2	VER-35 60-63 20230624	Step 4	Solid	Metal Hydroxide	
140-32513-3	VER-70 75-80 20230623	Step 4	Solid	Metal Hydroxide	
MB 140-75320/5-B	Method Blank	Step 4	Solid	Metal Hydroxide	
LCS 140-75320/6-B	Lab Control Sample	Step 4	Solid	Metal Hydroxide	
LCSD 140-75320/7-B	Lab Control Sample Dup	Step 4	Solid	Metal Hydroxide	
140-32513-1 DU	VER-35 55-60 20230624	Step 4	Solid	Metal Hydroxide	

SEP Batch: 75406

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 5	Solid	Organic-Bound	
140-32513-2	VER-35 60-63 20230624	Step 5	Solid	Organic-Bound	
140-32513-3	VER-70 75-80 20230623	Step 5	Solid	Organic-Bound	
MB 140-75406/5-B ^5	Method Blank	Step 5	Solid	Organic-Bound	
LCS 140-75406/6-B ^5	Lab Control Sample	Step 5	Solid	Organic-Bound	
LCSD 140-75406/7-B ^5	Lab Control Sample Dup	Step 5	Solid	Organic-Bound	
140-32513-1 DU	VER-35 55-60 20230624	Step 5	Solid	Organic-Bound	

Prep Batch: 75407

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 4	Solid	3010A	75320
140-32513-2	VER-35 60-63 20230624	Step 4	Solid	3010A	75320
140-32513-3	VER-70 75-80 20230623	Step 4	Solid	3010A	75320
MB 140-75320/5-B	Method Blank	Step 4	Solid	3010A	75320
LCS 140-75320/6-B	Lab Control Sample	Step 4	Solid	3010A	75320
LCSD 140-75320/7-B	Lab Control Sample Dup	Step 4	Solid	3010A	75320
140-32513-1 DU	VER-35 55-60 20230624	Step 4	Solid	3010A	75320

Prep Batch: 75487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 5	Solid	3010A	75406
140-32513-2	VER-35 60-63 20230624	Step 5	Solid	3010A	75406

QC Association Summary

Metals (Continued)

Prep Batch: 75487 (Continued)

Lab Sample ID 140-32513-3	Client Sample ID VER-70 75-80 20230623	Prep Type Step 5	Matrix	Method	Prep Batch 75406
MB 140-75406/5-B ^5	Method Blank	Step 5	Solid	3010A	75406
LCS 140-75406/6-B ^5	Lab Control Sample	Step 5	Solid	3010A	75406
LCSD 140-75406/7-B ^5	Lab Control Sample Dup	Step 5	Solid	3010A	75406
140-32513-1 DU	VER-35 55-60 20230624	Step 5	Solid	3010A	75406

SEP Batch: 75511

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 6	Solid	Acid/Sulfide	
140-32513-2	VER-35 60-63 20230624	Step 6	Solid	Acid/Sulfide	
140-32513-3	VER-70 75-80 20230623	Step 6	Solid	Acid/Sulfide	
MB 140-75511/5-A	Method Blank	Step 6	Solid	Acid/Sulfide	
LCS 140-75511/6-A	Lab Control Sample	Step 6	Solid	Acid/Sulfide	
LCSD 140-75511/7-A	Lab Control Sample Dup	Step 6	Solid	Acid/Sulfide	
140-32513-1 DU	VER-35 55-60 20230624	Step 6	Solid	Acid/Sulfide	

Prep Batch: 75565

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 7	Solid	Residual	
140-32513-2	VER-35 60-63 20230624	Step 7	Solid	Residual	
140-32513-3	VER-70 75-80 20230623	Step 7	Solid	Residual	
MB 140-75565/5-A	Method Blank	Step 7	Solid	Residual	
LCS 140-75565/6-A	Lab Control Sample	Step 7	Solid	Residual	
LCSD 140-75565/7-A	Lab Control Sample Dup	Step 7	Solid	Residual	
140-32513-1 DU	VER-35 55-60 20230624	Step 7	Solid	Residual	

Analysis Batch: 75871

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 1	Solid	6010B SEP	75207
140-32513-1	VER-35 55-60 20230624	Step 2	Solid	6010B SEP	75260
140-32513-1	VER-35 55-60 20230624	Step 3	Solid	6010B SEP	75294
140-32513-2	VER-35 60-63 20230624	Step 1	Solid	6010B SEP	75207
140-32513-2	VER-35 60-63 20230624	Step 2	Solid	6010B SEP	75260
140-32513-2	VER-35 60-63 20230624	Step 3	Solid	6010B SEP	75294
140-32513-3	VER-70 75-80 20230623	Step 1	Solid	6010B SEP	75207
140-32513-3	VER-70 75-80 20230623	Step 2	Solid	6010B SEP	75260
140-32513-3	VER-70 75-80 20230623	Step 3	Solid	6010B SEP	75294
MB 140-75184/5-B ^4	Method Blank	Step 1	Solid	6010B SEP	75207
MB 140-75227/5-B ^3	Method Blank	Step 2	Solid	6010B SEP	75260
MB 140-75274/5-B	Method Blank	Step 3	Solid	6010B SEP	75294
LCS 140-75184/6-B ^5	Lab Control Sample	Step 1	Solid	6010B SEP	75207
LCS 140-75227/6-B ^5	Lab Control Sample	Step 2	Solid	6010B SEP	75260
LCS 140-75274/6-B	Lab Control Sample	Step 3	Solid	6010B SEP	75294
LCSD 140-75184/7-B ^5	Lab Control Sample Dup	Step 1	Solid	6010B SEP	75207
LCSD 140-75227/7-B ^5	Lab Control Sample Dup	Step 2	Solid	6010B SEP	75260
LCSD 140-75274/7-B	Lab Control Sample Dup	Step 3	Solid	6010B SEP	75294
140-32513-1 DU	VER-35 55-60 20230624	Step 1	Solid	6010B SEP	75207
140-32513-1 DU	VER-35 55-60 20230624	Step 2	Solid	6010B SEP	75260
140-32513-1 DU	VER-35 55-60 20230624	Step 3	Solid	6010B SEP	75294

Eurofins Knoxville

8/3/2023

Prep Type

Step 4

Step 5

Step 6

Step 4

Step 5

Step 6

Step 4

Step 4

Step 5

Step 6

Matrix

Solid

Method

6010B SEP

Client Sample ID

VER-35 55-60 20230624

VER-35 55-60 20230624

VER-35 55-60 20230624

VER-35 60-63 20230624

VER-35 60-63 20230624

VER-35 60-63 20230624

VER-70 75-80 20230623

VER-70 75-80 20230623

VER-70 75-80 20230623

VER-70 75-80 20230623

Method Blank

Method Blank

Method Blank

Lab Control Sample

Lab Control Sample

Lab Control Sample

Lab Control Sample Dup

Lab Control Sample Dup

Lab Control Sample Dup

VER-35 55-60 20230624

VER-35 55-60 20230624

VER-35 55-60 20230624

Analysis Batch: 75894

Metals

Lab Sample ID

140-32513-1

140-32513-1

140-32513-1

140-32513-2

140-32513-2

140-32513-2

140-32513-3

140-32513-3

140-32513-3

140-32513-3

MB 140-75320/5-B

MB 140-75511/5-A

LCS 140-75320/6-B

LCS 140-75511/6-A

LCSD 140-75320/7-B

LCSD 140-75511/7-A

140-32513-1 DU

140-32513-1 DU

140-32513-1 DU

LCSD 140-75406/7-B ^5

LCS 140-75406/6-B ^5

MB 140-75406/5-B ^5

Prep Batch

75407

75487

75511

75407

75487

75511

75407

75407

75487

75511

75407

75487

75511

75407

75487

75511

75407

75487

75511

75407

75487

75511

1 2 3 4 5 6 7

11

12

Analysis Batch: 75976

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 7	Solid	6010B SEP	75565
140-32513-1	VER-35 55-60 20230624	Total/NA	Solid	6010B	75187
140-32513-1	VER-35 55-60 20230624	Total/NA	Solid	6010B	75187
140-32513-2	VER-35 60-63 20230624	Step 7	Solid	6010B SEP	75565
140-32513-2	VER-35 60-63 20230624	Total/NA	Solid	6010B	75187
140-32513-2	VER-35 60-63 20230624	Total/NA	Solid	6010B	75187
140-32513-3	VER-70 75-80 20230623	Step 7	Solid	6010B SEP	75565
140-32513-3	VER-70 75-80 20230623	Total/NA	Solid	6010B	75187
140-32513-3	VER-70 75-80 20230623	Total/NA	Solid	6010B	75187
MB 140-75187/5-A	Method Blank	Total/NA	Solid	6010B	75187
MB 140-75565/5-A	Method Blank	Step 7	Solid	6010B SEP	75565
LCS 140-75187/6-A	Lab Control Sample	Total/NA	Solid	6010B	75187
LCS 140-75565/6-A	Lab Control Sample	Step 7	Solid	6010B SEP	75565
LCSD 140-75187/7-A	Lab Control Sample Dup	Total/NA	Solid	6010B	75187
LCSD 140-75565/7-A	Lab Control Sample Dup	Step 7	Solid	6010B SEP	75565
140-32513-1 DU	VER-35 55-60 20230624	Step 7	Solid	6010B SEP	75565
140-32513-1 DU	VER-35 55-60 20230624	Total/NA	Solid	6010B	75187
140-32513-1 DU	VER-35 55-60 20230624	Total/NA	Solid	6010B	75187

Analysis Batch: 76083

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Sum of Steps 1-7	Solid	6010B SEP	
140-32513-2	VER-35 60-63 20230624	Sum of Steps 1-7	Solid	6010B SEP	
140-32513-3	VER-70 75-80 20230623	Sum of Steps 1-7	Solid	6010B SEP	

9

General Chemistry

Analysis Batch: 75814

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
140-32513-1	VER-35 55-60 20230624	Total/NA	Solid	Moisture
140-32513-2	VER-35 60-63 20230624	Total/NA	Solid	Moisture
140-32513-3	VER-70 75-80 20230623	Total/NA	Solid	Moisture
140-32513-1 DU	VER-35 55-60 20230624	Total/NA	Solid	Moisture

Client Sample ID: VER-35 55-60 20230624 Date Collected: 06/24/23 14:20 Date Received: 07/03/23 11:15

Prep Type	Batch Type Analysis	Batch Method 6010B SEP	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed 08/02/23 14·24	Analyst	EFT KNX
	Instrumen	t ID: NOEQUIP		· · · · · · · · · ·			10000	00/02/20 11:21		
Total/NA	Analysis Instrumen	Moisture t ID: NOEQUIP		1			75814	07/26/23 15:29	ACW	EET KNX

Client Sample ID: VER-35 55-60 20230624 Date Collected: 06/24/23 14:20 Date Received: 07/03/23 11:15

_	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	
Total/NA	Analysis Instrumer	6010B nt ID: DUO		1	1.00 g	50 ML	75976	07/31/23 13:22	KNC	EET KNX
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		2			75976	07/31/23 14:12	KNC	EET KNX
Step 1	SEP	Exchangeable			5.00 g	25 mL	75184	07/10/23 12:30	LAH	EET KNX
Step 1	Prep	3010A			5 mL	50 mL	75207	07/11/23 08:00	LAH	EET KNX
Step 1	Analysis Instrumer	6010B SEP nt ID: DUO		4			75871	07/27/23 13:01	KNC	EET KNX
Step 2	SEP	Carbonate			5.00 g	25 mL	75227	07/11/23 08:00	LAH	EET KNX
Step 2	Prep	3010A			5 mL	50 mL	75260	07/12/23 08:00	LAH	EET KNX
Step 2	Analysis Instrumer	6010B SEP nt ID: DUO		3			75871	07/27/23 13:51	KNC	EET KNX
Step 3	SEP	Non-Crystalline			5.00 g	25 mL	75274	07/12/23 08:00	LAH	EET KNX
Step 3	Prep	3010A			5 mL	50 mL	75294	07/13/23 08:00	LAH	EET KNX
Step 3	Analysis Instrumer	6010B SEP nt ID: DUO		1			75871	07/27/23 14:40	KNC	EET KNX
Step 4	SEP	Metal Hydroxide			5.00 g	25 mL	75320	07/13/23 08:00	LAH	EET KNX
Step 4	Prep	3010A			5 mL	50 mL	75407	07/17/23 08:00	LAH	EET KNX
Step 4	Analysis Instrumer	6010B SEP nt ID: DUO		1			75894	07/28/23 12:49	KNC	EET KNX
Step 5	SEP	Organic-Bound			5.00 g	75 mL	75406	07/17/23 08:00	LAH	EET KNX
Step 5	Prep	3010A			5 mL	50 mL	75487	07/19/23 08:00	LAH	EET KNX
Step 5	Analysis Instrumer	6010B SEP nt ID: DUO		5			75894	07/28/23 13:39	KNC	EET KNX
Step 6	SEP	Acid/Sulfide			5.00 g	250 mL	75511	07/19/23 08:00	LAH	EET KNX
Step 6	Analysis Instrumer	6010B SEP nt ID: DUO		1			75894	07/28/23 14:29	KNC	EET KNX
Step 7	Prep	Residual			1.00 g	50 mL	75565	07/20/23 08:00	LAH	EET KNX
Step 7	Analysis Instrumer	6010B SEP nt ID: DUO		1			75976	07/31/23 12:46	KNC	EET KNX

Job ID: 140-32513-1

Matrix: Solid

Matrix: Solid

Percent Solids: 95.4

Lab Sample ID: 140-32513-1

Lab Sample ID: 140-32513-1

2 3 4 5 6 7 8 9 10

Client Sample ID: VER-35 60-63 20230624 Date Collected: 06/24/23 14:50 Date Received: 07/03/23 11:15

Prep Type Sum of Steps 1-7	Batch Type Analysis	Batch Method 6010B SEP	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 76083	Prepared or Analyzed 08/02/23 14:24	Analyst KNC	EET KNX
Total/NA	Analysis Instrument	Moisture t ID: NOEQUIP		1			75814	07/26/23 15:29	ACW	EET KNX

Client Sample ID: VER-35 60-63 20230624 Date Collected: 06/24/23 14:50 Date Received: 07/03/23 11:15

- -	Batch	Batch	B	Dil	Initial	Final	Batch	Prepared	A	
		Tetel	Run	Factor	Amount	Amount		or Analyzed		
Total/NA	Analysis Instrumen	6010B t ID: DUO		1	1.00 g	50 ML	75976	07/31/23 13:33	KNC	EET KNX
Total/NA Total/NA	Prep Analysis Instrumen	Total 6010B t ID: DUO		2	1.00 g	50 mL	75187 75976	07/21/23 08:00 07/31/23 14:22	LAH KNC	EET KNX EET KNX
Step 1 Step 1 Step 1	SEP Prep Analysis Instrumen	Exchangeable 3010A 6010B SEP t ID: DUO		4	5.00 g 5 mL	25 mL 50 mL	75184 75207 75871	07/10/23 12:30 07/11/23 08:00 07/27/23 13:11	LAH LAH KNC	EET KNX EET KNX EET KNX
Step 2 Step 2 Step 2	SEP Prep Analysis Instrumen	Carbonate 3010A 6010B SEP t ID: DUO		3	5.00 g 5 mL	25 mL 50 mL	75227 75260 75871	07/11/23 08:00 07/12/23 08:00 07/27/23 14:01	LAH LAH KNC	EET KNX EET KNX EET KNX
Step 3 Step 3 Step 3	SEP Prep Analysis Instrumen	Non-Crystalline 3010A 6010B SEP t ID: DUO		1	5.00 g 5 mL	25 mL 50 mL	75274 75294 75871	07/12/23 08:00 07/13/23 08:00 07/27/23 14:50	LAH LAH KNC	EET KNX EET KNX EET KNX
Step 4 Step 4 Step 4	SEP Prep Analysis Instrumen	Metal Hydroxide 3010A 6010B SEP t ID: DUO		1	5.00 g 5 mL	25 mL 50 mL	75320 75407 75894	07/13/23 08:00 07/17/23 08:00 07/28/23 12:59	LAH LAH KNC	EET KNX EET KNX EET KNX
Step 5 Step 5 Step 5	SEP Prep Analysis Instrumen	Organic-Bound 3010A 6010B SEP t ID: DUO		5	5.00 g 5 mL	75 mL 50 mL	75406 75487 75894	07/17/23 08:00 07/19/23 08:00 07/28/23 13:49	LAH LAH KNC	EET KNX EET KNX EET KNX
Step 6 Step 6	SEP Analysis Instrumen	Acid/Sulfide 6010B SEP t ID: DUO		1	5.00 g	250 mL	75511 75894	07/19/23 08:00 07/28/23 14:39	LAH KNC	EET KNX EET KNX
Step 7 Step 7	Prep Analysis Instrumen	Residual 6010B SEP t ID: DUO		1	1.00 g	50 mL	75565 75976	07/20/23 08:00 07/31/23 12:57	LAH KNC	EET KNX EET KNX

Matrix: Solid

Matrix: Solid

Percent Solids: 95.4

Lab Sample ID: 140-32513-2

Lab Sample ID: 140-32513-2

2 3 4 5 6 7 8 9 10

Client Sample ID: VER-70 75-80 20230623 Date Collected: 06/23/23 17:00 Date Received: 07/03/23 11:15

Prep Type Sum of Steps 1-7	Batch Type Analysis Instrumen	Batch Method 6010B SEP t ID: NOEQUIP	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 76083	Prepared or Analyzed 08/02/23 14:24	Analyst KNC	EET KNX
Total/NA	Analysis Instrumen	Moisture t ID: NOEQUIP		1			75814	07/26/23 15:29	ACW	EET KNX

Client Sample ID: VER-70 75-80 20230623 Date Collected: 06/23/23 17:00 Date Received: 07/03/23 11:15

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		1	Ū		75976	07/31/23 13:39	KNC	EET KNX
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis Instrume	6010B nt ID: DUO		5			75976	07/31/23 15:08	KNC	EET KNX
Step 1	SEP	Exchangeable			5.00 g	25 mL	75184	07/10/23 12:30	LAH	EET KNX
Step 1	Prep	3010A			5 mL	50 mL	75207	07/11/23 08:00	LAH	EET KNX
Step 1	Analysis Instrume	6010B SEP nt ID: DUO		4			75871	07/27/23 13:16	KNC	EET KNX
Step 2	SEP	Carbonate			5.00 g	25 mL	75227	07/11/23 08:00	LAH	EET KNX
Step 2	Prep	3010A			5 mL	50 mL	75260	07/12/23 08:00	LAH	EET KNX
Step 2	Analysis Instrume	6010B SEP nt ID: DUO		3			75871	07/27/23 14:06	KNC	EET KNX
Step 3	SEP	Non-Crystalline			5.00 g	25 mL	75274	07/12/23 08:00	LAH	EET KNX
Step 3	Prep	3010A			5 mL	50 mL	75294	07/13/23 08:00	LAH	EET KNX
Step 3	Analysis Instrume	6010B SEP nt ID: DUO		1			75871	07/27/23 14:55	KNC	EET KNX
Step 4	SEP	Metal Hydroxide			5.00 g	25 mL	75320	07/13/23 08:00	LAH	EET KNX
Step 4	Prep	3010A			5 mL	50 mL	75407	07/17/23 08:00	LAH	EET KNX
Step 4	Analysis Instrume	6010B SEP nt ID: DUO		1			75894	07/28/23 13:04	KNC	EET KNX
Step 4	SEP	Metal Hydroxide			5.00 g	25 mL	75320	07/13/23 08:00	LAH	EET KNX
Step 4	Prep	3010A			5 mL	50 mL	75407	07/17/23 08:00	LAH	EET KNX
Step 4	Analysis Instrumer	6010B SEP nt ID: DUO		2			75894	07/28/23 14:55	KNC	EET KNX
Step 5	SEP	Organic-Bound			5.00 g	75 mL	75406	07/17/23 08:00	LAH	EET KNX
Step 5	Prep	3010A			5 mL	50 mL	75487	07/19/23 08:00	LAH	EET KNX
Step 5	Analysis Instrume	6010B SEP nt ID: DUO		5			75894	07/28/23 13:54	KNC	EET KNX
Step 6	SEP	Acid/Sulfide			5.00 g	250 mL	75511	07/19/23 08:00	LAH	EET KNX
Step 6	Analysis Instrume	6010B SEP nt ID: DUO		1			75894	07/28/23 14:44	KNC	EET KNX
Step 7	Prep	Residual			1.00 g	50 mL	75565	07/20/23 08:00	LAH	EET KNX
Step 7	Analysis Instrumer	6010B SEP nt ID: DUO		1			75976	07/31/23 13:17	KNC	EET KNX

Eurofins Knoxville

10

Job ID: 140-32513-1

Matrix: Solid

Matrix: Solid

Percent Solids: 90.0

Lab Sample ID: 140-32513-3

Lab Sample ID: 140-32513-3

Client Sample ID: Method Blank

Lab Sample ID: MB 140-75184/5-B ^4

Lab Sample ID: MB 140-75187/5-A

Matrix: Solid

Matrix: Solid

Matrix: Solid

10

Date Received: N/A												
	Batch	Batch		Dil	Initial	Final	Batch	Prepared				
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab		
Step 1	SEP	Exchangeable			5.00 g	25 mL	75184	07/10/23 12:30	LAH	EET KNX		
Step 1	Prep	3010A			5 mL	50 mL	75207	07/11/23 08:00	LAH	EET KNX		
Step 1	Analysis	6010B SEP		4			75871	07/27/23 12:47	KNC	EET KNX		
	Instrumer	nt ID: DUO										

Client Sample ID: Method Blank Date Collected: N/A **Date Received: N/A**

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis	6010B		1			75976	07/31/23 12:31	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 2	SEP	Carbonate			5.00 g	25 mL	75227	07/11/23 08:00	LAH	EET KNX
Step 2	Prep	3010A			5 mL	50 mL	75260	07/12/23 08:00	LAH	EET KNX
Step 2	Analysis	6010B SEP		3			75871	07/27/23 13:36	KNC	EET KNX
	Instrumer	t ID: DUO								

Client Sample ID: Method Blank Date Collected: N/A **Date Received: N/A**

Lab Sample	ID:	MB	140-75274/5-B
-			Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 3	SEP	Non-Crystalline			5.00 g	25 mL	75274	07/12/23 08:00	LAH	EET KNX
Step 3	Prep	3010A			5 mL	50 mL	75294	07/13/23 08:00	LAH	EET KNX
Step 3	Analysis	6010B SEP		1			75871	07/27/23 14:26	KNC	EET KNX
	Instrumer	t ID: DUO								

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

Lab Sample ID	: MB	140-75320/5-B
		Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 4	SEP	Metal Hydroxide			5.00 g	25 mL	75320	07/13/23 08:00	LAH	EET KNX
Step 4	Prep	3010A			5 mL	50 mL	75407	07/17/23 08:00	LAH	EET KNX
Step 4	Analysis	6010B SEP		1			75894	07/28/23 12:35	KNC	EET KNX
	Instrumen	t ID: DUO								

Date Received: N/A

Client Sample ID: Method Blank

Lab Sample ID: MB 140-75406/5-B ^5

Matrix: Solid

Matrix: Solid

10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 5	SEP	Organic-Bound			5.00 g	75 mL	75406	07/17/23 08:00	LAH	EET KNX
Step 5	Prep	3010A			5 mL	50 mL	75487	07/19/23 08:00	LAH	EET KNX
Step 5	Analysis	6010B SEP		5			75894	07/28/23 13:24	KNC	EET KNX
	Instrumer	nt ID: DUO		Ū				0.,20,20,10.21		

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 6	SEP	Acid/Sulfide			5.00 g	250 mL	75511	07/19/23 08:00	LAH	EET KNX
Step 6	Analysis	6010B SEP		1			75894	07/28/23 14:14	KNC	EET KNX
	Instrumer	t ID: DUO								

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 7	Prep	Residual			1.00 g	50 mL	75565	07/20/23 08:00	LAH	EET KNX
Step 7	Analysis	6010B SEP		1			75976	07/31/23 12:16	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Date Collected: N/A

Lab Sample ID: LCS 140-75184/6-B ^5 Matrix: Solid

Lab Sample ID: LCS 140-75187/6-A

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 1	SEP	Exchangeable			5.00 g	25 mL	75184	07/10/23 12:30	LAH	EET KNX
Step 1	Prep	3010A			5 mL	50 mL	75207	07/11/23 08:00	LAH	EET KNX
Step 1	Analysis	6010B SEP		5			75871	07/27/23 12:52	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis	6010B		1			75976	07/31/23 12:36	KNC	EET KNX
	Instrumen	t ID: DUO								

Eurofins Knoxville

Matrix: Solid

Lab Sample ID: MB 140-75511/5-A Matrix: Solid

Lab Sample ID: MB 140-75565/5-A

Date Received: N/A

Lab Sample ID: LCS 140-75227/6-B ^5

Lab Sample ID: LCS 140-75274/6-B

Lab Sample ID: LCS 140-75320/6-B

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 2	SEP	Carbonate			5.00 g	25 mL	75227	07/11/23 08:00	LAH	EET KNX
Step 2	Prep	3010A			5 mL	50 mL	75260	07/12/23 08:00	LAH	EET KNX
Step 2	Analysis	6010B SEP		5			75871	07/27/23 13:41	KNC	EET KNX
	Instrumer	t ID: DUO								

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

Client Sample ID: Lab Control Sample

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 3	SEP	Non-Crystalline			5.00 g	25 mL	75274	07/12/23 08:00	LAH	EET KNX
Step 3	Prep	3010A			5 mL	50 mL	75294	07/13/23 08:00	LAH	EET KNX
Step 3	Analysis	6010B SEP		1			75871	07/27/23 14:31	KNC	EET KNX
	Instrumer	t ID: DUO								

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 4	SEP	Metal Hydroxide			5.00 g	25 mL	75320	07/13/23 08:00	LAH	EET KNX
Step 4	Prep	3010A			5 mL	50 mL	75407	07/17/23 08:00	LAH	EET KNX
Step 4	Analysis	6010B SEP		1			75894	07/28/23 12:40	KNC	EET KNX
	Instrumen	it ID: DUO								

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 5	SEP	Organic-Bound			5.00 g	75 mL	75406	07/17/23 08:00	LAH	EET KNX
Step 5	Prep	3010A			5 mL	50 mL	75487	07/19/23 08:00	LAH	EET KNX
Step 5	Analysis	6010B SEP		5			75894	07/28/23 13:29	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

Lab Sample ID: LCS 140-75511/6-A Matrix: Solid

Lab Sample ID: LCS 140-75406/6-B ^5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 6	SEP	Acid/Sulfide			5.00 g	250 mL	75511	07/19/23 08:00	LAH	EET KNX
Step 6	Analysis	6010B SEP		1			75894	07/28/23 14:19	KNC	EET KNX
	Instrumen	it ID: DUO								

Eurofins Knoxville

Matrix: Solid

Matrix: Solid

Matrix: Solid

10

Date Received: N/A

Client Sample ID: Lab Control Sample

Job ID: 140-32513-1

2 3 4 5 6 7 8

9 10 11

Lab Sample ID: LCS 140-75565/6-A

Matrix: Solid

Matrix: Solid

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Step 7	Prep	Residual			1.00 g	50 mL	75565	07/20/23 08:00	LAH	EET KNX
Step 7	Analysis	6010B SEP		1			75976	07/31/23 12:21	KNC	EET KNX

Client Sample ID: Lab Control Sample Dup Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 1	SEP	Exchangeable			5.00 g	25 mL	75184	07/10/23 12:30	LAH	EET KNX
Step 1	Prep	3010A			5 mL	50 mL	75207	07/11/23 08:00	LAH	EET KNX
Step 1	Analysis	6010B SEP		5			75871	07/27/23 12:57	KNC	EET KNX
	Instrumer	t ID: DUO								

Client Sample ID: Lab Control Sample Dup Date Collected: N/A Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis	6010B		1			75976	07/31/23 12:41	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Dup Date Collected: N/A Date Received: N/A

Lab Sample ID: LCSD 140-75227/7-B ^5 Matrix: Solid

Lab Sample ID: LCSD 140-75274/7-B

Lab Sample ID: LCSD 140-75187/7-A

Lab Sample ID: LCSD 140-75184/7-B ^5

watrix: Solid

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 2	SEP	Carbonate			5.00 g	25 mL	75227	07/11/23 08:00	LAH	EET KNX
Step 2	Prep	3010A			5 mL	50 mL	75260	07/12/23 08:00	LAH	EET KNX
Step 2	Analysis	6010B SEP		5			75871	07/27/23 13:46	KNC	EET KNX
	Instrumer	it ID: DUO								

Client Sample ID: Lab Control Sample Dup Date Collected: N/A Date Received: N/A

Batch Batch Dil Initial Final Batch Prepared Ргер Туре Method Amount Number Туре Run Factor Amount or Analyzed Analyst Lab Step 3 SEP Non-Crystalline 5.00 g 75274 07/12/23 08:00 LAH EET KNX 25 mL 75294 Step 3 Prep 3010A 5 mL 50 mL 07/13/23 08:00 LAH EET KNX Step 3 Analysis 6010B SEP 1 75871 07/27/23 14:36 KNC EET KNX Instrument ID: DUO

Lab Sample ID: LCSD 140-75320/7-B

Lab Sample ID: LCSD 140-75406/7-B ^5

Matrix: Solid

Matrix: Solid

Matrix: Solid

10

Client Sample ID: Lab Control Sample Dup Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 4	SEP	Metal Hydroxide			5.00 g	25 mL	75320	07/13/23 08:00	LAH	EET KNX
Step 4	Prep	3010A			5 mL	50 mL	75407	07/17/23 08:00	LAH	EET KNX
Step 4	Analysis	6010B SEP		1			75894	07/28/23 12:44	KNC	EET KNX
	Instrumen	t ID: DUO								

Client Sample ID: Lab Control Sample Dup Date Collected: N/A **Date Received: N/A**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 5	SEP	Organic-Bound			5.00 g	75 mL	75406	07/17/23 08:00	LAH	EET KNX
Step 5	Prep	3010A			5 mL	50 mL	75487	07/19/23 08:00	LAH	EET KNX
Step 5	Analysis	6010B SEP		5			75894	07/28/23 13:34	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Dup Date Collected: N/A Date Received: N/A

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number Туре Run Factor or Analyzed Analyst Lab Step 6 SEP Acid/Sulfide 5.00 g 250 mL 75511 07/19/23 08:00 LAH EET KNX Step 6 6010B SEP 75894 07/28/23 14:24 KNC Analysis EET KNX 1

Instrument ID: DUO

Client Sample ID: Lab Control Sample Dup Date Collected: N/A Date Received: N/A

Lab Sample ID: LCSD 140-75565/7-A Matrix: Solid

Lab Sample ID: 140-32513-1 DU

Lab Sample ID: LCSD 140-75511/7-A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Step 7	Prep	Residual			1.00 g	50 mL	75565	07/20/23 08:00	LAH	EET KNX
Step 7	Analysis	6010B SEP		1			75976	07/31/23 12:26	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: VER-35 55-60 20230624 Date Collected: 06/24/23 14:20 Date Received: 07/03/23 11:15

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			75814	07/26/23 15:29	ACW	EET KNX
_	Instrument	ID: NOEQUIP								

Eurofins Knoxville

Matrix: Solid

Client Sample ID: VER-35 55-60 20230624 Date Collected: 06/24/23 14:20 Date Received: 07/03/23 11:15

Lab Sample ID: 140-32513-1 DU Matrix: Solid

Percent Solids: 95.4

10

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis	6010B		1			75976	07/31/23 13:28	KNC	EET KNX
	Instrument	ID: DUO								
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis	6010B		2			75976	07/31/23 14:17	KNC	EET KNX
	Instrument	ID: DUO								
Step 1	SEP	Exchangeable			5.00 g	25 mL	75184	07/10/23 12:30	LAH	EET KNX
Step 1	Prep	3010A			5 mL	50 mL	75207	07/11/23 08:00	LAH	EET KNX
Step 1	Analysis	6010B SEP		4			75871	07/27/23 13:06	KNC	EET KNX
	Instrument	ID: DUO								
Step 2	SEP	Carbonate			5.00 g	25 mL	75227	07/11/23 08:00	LAH	EET KNX
Step 2	Prep	3010A			5 mL	50 mL	75260	07/12/23 08:00	LAH	EET KNX
Step 2	Analysis	6010B SEP		3			75871	07/27/23 13:56	KNC	EET KNX
	Instrument	ID: DUO								
Step 3	SEP	Non-Crystalline			5.00 g	25 mL	75274	07/12/23 08:00	LAH	EET KNX
Step 3	Prep	3010A			5 mL	50 mL	75294	07/13/23 08:00	LAH	EET KNX
Step 3	Analysis	6010B SEP		1			75871	07/27/23 14:45	KNC	EET KNX
	Instrument	ID: DUO								
Step 4	SEP	Metal Hydroxide			5.00 g	25 mL	75320	07/13/23 08:00	LAH	EET KNX
Step 4	Prep	3010A			5 mL	50 mL	75407	07/17/23 08:00	LAH	EET KNX
Step 4	Analysis	6010B SEP		1			75894	07/28/23 12:54	KNC	EET KNX
	Instrument	ID: DUO								
Step 5	SEP	Organic-Bound			5.00 g	75 mL	75406	07/17/23 08:00	LAH	EET KNX
Step 5	Prep	3010A			5 mL	50 mL	75487	07/19/23 08:00	LAH	EET KNX
Step 5	Analysis	6010B SEP		5			75894	07/28/23 13:44	KNC	EET KNX
	Instrument	ID: DUO								
Step 6	SEP	Acid/Sulfide			5.00 g	250 mL	75511	07/19/23 08:00	LAH	EET KNX
Step 6	Analysis	6010B SEP		1			75894	07/28/23 14:34	KNC	EET KNX
	Instrument	ID: DUO								
Step 7	Prep	Residual			1.00 g	50 mL	75565	07/20/23 08:00	LAH	EET KNX
Step 7	Analysis	6010B SEP		1	-		75976	07/31/23 12:51	KNC	EET KNX
	Instrument	ID: DUO								

Laboratory References:

EET KNX = Eurofins Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Job ID: 140-32513-1

5

8
9
10

11 12 13

l aboratory	· Furofins	Knoxville

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
	AFCEE	N/A	
ANAB	Dept. of Defense ELAP	L2311	02-13-25
ANAB	Dept. of Energy	L2311.01	02-13-25
ANAB	ISO/IEC 17025	L2311	02-13-25
Arkansas DEQ	State	88-0688	06-16-24
Colorado	State	TN00009	02-29-24
Connecticut	State	PH-0223	09-30-23
Florida	NELAP	E87177	06-30-24
Georgia (DW)	State	906	07-27-25
Hawaii	State	NA	07-27-23 *
Kansas	NELAP	E-10349	10-31-23
Kentucky (DW)	State	90101	12-31-23
Louisiana (All)	NELAP	83979	06-30-24
Louisiana (DW)	State	LA019	12-31-23
Maryland	State	277	03-31-24
Michigan	State	9933	07-27-25
Nevada	State	TN00009	07-31-23 *
New Hampshire	NELAP	2999	01-17-24
New Jersey	NELAP	TN001	07-01-24
New York	NELAP	10781	03-31-24
North Carolina (DW)	State	21705	07-31-24
North Carolina (WW/SW)	State	64	12-31-23
Oklahoma	State	9415	08-31-23
Oregon	NELAP	TNI0189	01-01-24
Pennsylvania	NELAP	68-00576	12-01-23
Tennessee	State	02014	07-27-25
Texas	NELAP	T104704380-22-17	08-31-23
US Fish & Wildlife	US Federal Programs	058448	07-31-24
USDA	US Federal Programs	525-22-279-18762	10-06-25
Utah	NELAP	TN00009	07-31-24
Virginia	NELAP	460176	09-14-23
Washington	State	C593	01-19-24
West Virginia (DW)	State	9955C	12-31-23
West Virginia DEP	State	345	04-30-24
Wisconsin	State	998044300	08-31-23

Method Summary

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Method	Method Description	Protocol	Laboratory
6010B	SEP Metals (ICP) - Total	SW846	EET KNX
6010B SEP	SEP Metals (ICP)	SW846	EET KNX
Moisture	Percent Moisture	EPA	EET KNX
3010A	Preparation, Total Metals	SW846	EET KNX
Acid/Sulfide	Sequential Extraction Procedure, Acid/Sulfide Fraction	TAL-KNOX	EET KNX
Carbonate	Sequential Extraction Procedure, Carbonate Fraction	TAL-KNOX	EET KNX
Exchangeable	Sequential Extraction Procedure, Exchangeable Fraction	TAL-KNOX	EET KNX
Metal Hydroxide	Sequential Extraction Procedure, Metal Hydroxide Fraction	TAL-KNOX	EET KNX
Non-Crystalline	Sequential Extraction Procedure, Non-crystalline Materials	TAL-KNOX	EET KNX
Organic-Bound	Sequential Extraction Procedure, Organic Bound Fraction	TAL-KNOX	EET KNX
Residual	Sequential Extraction Procedure, Residual Fraction	TAL-KNOX	EET KNX
Total	Preparation, Total Material	TAL-KNOX	EET KNX

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL-KNOX = TestAmerica Laboratories, Knoxville, Facility Standard Operating Procedure.

Laboratory References:

EET KNX = Eurofins Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

e	
Knoxvi	
America,	Pike
s Test/	dlebrook
Eurofin	5815 Mid

Chain of Custody Record

Environment Testing TestAmenca 🚏 eurofins

Knoxville, TN 37921-5947 phone 865.291.3000 fax 865.584.4315

TestAmerica Laboratories, Inc. d/b/a Eurofins TestAmerica 11:15 FOD 11:22 cocs Sample Specific Notes: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) For Lab Use Only: -ab Sampling: Walk-in Client: ō Job / SDG No. 713/23 Months Therm ID No. Date/Time: Date/Time: Date/Time: COC No: Sampler 140-32513 Chain of Custody Archive for Kuk Corr'd: E Company: Company: Company Disposal by Lab Carrier: Date: Cooler Temp. (°C): Obs'd: Huch Received in Laboratory by: Lab Contact: Ryan Henry Other: Return to Client Site Contact: NA Received by Received by: CRA (010B SEP (Li, Fe, Mn) × × × z z Perform MS / MSD (Y / N) z (N / Y) elqms2 benefit z Date/Time: 1000 NPDES Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the # of Cont. ~ Date/Time: Date/Time: WORKING DAYS Matrix Solid Solid Solid **Analysis Turnaround Time** Regulatory Program: DW **Project Manager: Allison Kreinberg** Unknowr Type (C=Comp, G=Grab) Sample Company: / KEOS / NTCC TAT if different from Below ശ ശ ტ 2 weeks 1 week 2 days 1 day Sample Time 1450 1700 1420 Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other CALENDAR DAYS Custody Seal No.: 6/24/2023 6/24/2023 6/23/2023 Poison B Company: Sample Company: Tel/Fax: Date 🗶 o o o Skin Irritant Comments Section if the lab is to dispose of the sample. Special Instructions/QC Requirements & Comments: Received Ambient AT: 20.0/CT: 20.39 **2** VER-35 60-63 20230624 VER-70 75-80 20230623 VER-35 55-60 20230624 ব Sample Identification Bux Fedex 7804 7929 1869 Phone Client Contact Yes Possible Hazard Identification: Rich 941 Chatham Lane, Suite 103 Geosyntec Consultants, Inc. No Custady Seal Custody Seals Intact: DH 713123 Columbus, OH 43221 Project Name: Vistra Relinquished by: Belinquished by: (614) 468-0421 Site: Vermilion Non-Hazard P O #

Palge

Form No. CA-C-WI-002, Rev. 4.21, dated 4/4/2019

5

13

Review Items	Yes	No	NA	If No, what was the problem?	Comments/Actions Taken
1. Are the shipping containers intact?	7			Containers, Broken	
2. Were ambient air containers received intact?				□ Checked in lab	[0]
3. The coolers/containers custody seal if present, is it				□ Yes	
intact?			2		
4. Is the cooler temperature within limits? (> freezing				□ Cooler Out of Temp, Client	
temp. of water to 6°C, VOST: 10°C)				Contacted, Proceed/Cancel	
Thermometer ID : Sc73			2	□ Cooler Out of Temp, Same Day	
Correction factor: +D-5-C	-			Receipt	
5. Were all of the sample containers received intact?	7			🗆 Containers, Broken	
6. Were samples received in appropriate containers?			7	Containers, Improper; Client	
7. Do sample container labels match COC?				COC & Samples Do Not Match	
(IDs, Dates, Times)	7			□ COC Incorrect/Incomplete	
				COC Not Received	
8. Were all of the samples listed on the COC received?				□ Sample Received, Not on COC	
	>			□ Sample on COC, Not Received	
9. Is the date/time of sample collection noted?	7			Contacted Contacted	
10. Was the sampler identified on the COC?		1		□ Sampler Not Listed on COC	Labeling Verified by: Date:
11. Is the client and project name/# identified?	7			□ COC Incorrect/Incomnlete	nll tast strin lot numbon.
12. Are tests/parameters listed for each sample?	7			COC No tests on COC	
13. Is the matrix of the samples noted?	>			□ COC Incorrect/Incomplete	
14. Was COC relinquished? (Signed/Dated/Timed)	7			COC Incorrect/Incomplete	Box 16A: pH Box 18A: Residual
15. Were samples received within holding time?	>			□ Holding Time - Receint	Preservative:
16. Were samples received with correct chemical				DH Adiusted, pH Included	Lot Number:
preservative (excluding Encore)?			7	(See box 16A)	Exp Date:
				Incorrect Preservative	Analyst:
1/. Were VUA samples received without headspace?			7	□ Headspace (VOA only)	Date:
18. Did you check for residual chlorine, if necessary?				Contraction Chlorine	l ime:
Chlorine test strin lot number			7		
19. For 1613B water samples is pH<9?			\mathbf{b}	□ If no notify lab to adjust	
20. For rad samples was sample activity info. Provided?			2	Project missing info	
Project #: 14006499 PM Instructions:				X	
Sample Receiving Associate:			Date:	7/3/23	OA026R32.doc. 062719

8/3/2023

QA026R32.doc, 062719

ATTACHMENT 4 X-Ray Diffraction Laboratory Analytical Report

Quantitative X-Ray Diffraction by Rietveld Refinement

Report Prepared for:	Environmental Services
Project Number/ LIMS No.	Custom XRD/MI4526-AUG23
Sample Receipt:	August 10, 2023
Sample Analysis:	August 31, 2023
Reporting Date:	September 13, 2023
Instrument:	BRUKER AXS D8 Advance Diffractometer
Test Conditions:	Co radiation, 35 kV, 40 mA; Detector: LYNXEYE Regular Scanning: Step: 0.02°, Step time: 0.75s, 2θ range: 6-80° Clay Section Scanning: Step: 0.01°, Step time:0.2s, 2θ range: 3-40°
Interpretations :	PDF2/PDF4 powder diffraction databases issued by the International Center for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.
Detection Limit:	0.5-2%. Strongly dependent on crystallinity.

Contents:

Method Summary
 Quantitative XRD Results
 XRD Pattern(s)

Zhihai (Adrian) Zhang, Ph.D Mineralogist

Kim Gibbs, H.B.Sc., P.Geo. Senior Mineralogist

ACCREDITATION: SGS Natural Resources Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Canada Inc. - Minerals: <u>https://www.scc.ca/en/search/palcan.</u>

SGS Natural Resources P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 a division of SGS Canada Inc. Tel: (705) 652-2000 Fax: (705) 652-6365 www.sgs.com www.sgs.com/met Member of the SGS Group (SGS SA)

Method Summary

The Rietveld Method of Mineral Identification by XRD (ME-LR-MIN-MET-MN-D05) method used by SGS Natural Resources is accredited to the requirements of ISO/IEC 17025.

Mineral Identification and Interpretation:

Mineral identification and interpretation involves matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

Clay Mineral Separation and Identification:

Clay minerals are typically fine-grained (<2 µm) phyllosilicates in sedimentary rock. Due to the poor crystallinity and fine size of clay minerals, separation of the clay fraction from bulk samples by centrifuge is required. A slide of the oriented clay fraction is prepared and scanned followed by a series of procedures (the addition of ethylene glycol and high temperature heating). Clay minerals are identified by their individual diffraction patterns and changes in their diffraction pattern after different treatments. Clay speciation and mineral identification of the bulk sample are performed using DIFFRACplus EVA (Bruker AXS).

Quantitative Rietveld Analysis:

Quantitative Rietveld Analysis is performed by using Topas 4.2 (Bruker AXS), a graphics based profile analysis program built around a non-linear least squares fitting system, to determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the obtained experimental patterns.

Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.05wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

Mineral/Compound	VER-35 55-60 20230624 AUG4526-01	VER-35 60-63 20230624 AUG4526-02	VER-70 30-40 20230623 AUG4526-03	VER-70 41-42 20230623 AUG4526-04	VER-70 75-80 20230623 AUG4526-05
	(wt %)				
Quartz	38.5	38.1	48.6	48.2	35.0
Chlorite	6.9	6.8	1.2	3.6	7.7
Muscovite	23.4	23.0	13.5	15.2	27.0
Albite	12.6	12.6	10.6	10.8	11.5
Microcline	1.0	1.1	1.3	1.1	0.7
Siderite	4.9	5.0	0.9	0.1	5.4
Actinolite	-	-	0.8	-	-
Dolomite	-	-	11.7	11.7	-
Clays					
Illite	7.1	8.0	7.4	5.6	5.2
Kaolinite	5.6	5.4	3.2	3.7	7.5
Montmorillonite	-	-	0.8	-	-
TOTAL	100	100	100	100	100

Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.

Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.

The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

Mineral/Compound	Formula
Quartz	SiO ₂
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈
Muscovite	KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂
Albite	NaAlSi ₃ O ₈
Microcline	KAISi ₃ O ₈
Siderite	FeCO ₃
Illite	(K,H ₃ O)(Al,Mg,Fe) ₂ (Si,Al) ₄ O ₁₀ [(OH) ₂ ,(H ₂ O)]
Kaolinite	$AI_2Si_2O_5(OH)_4$
Actinolite	Ca ₂ (Mg,Fe) ₅ Si ₈ O ₂₂ (OH) ₂
Dolomite	CaMg(CO ₃) ₂
Montmorillonite	(Na,Ca) _{0.3} (Al,Mg) ₂ Si ₄ O ₁₀ (OH) ₂ ·10H ₂ O

VER-35 55-60 20230624 56,000 - AUG4526-1 riet.raw_1 38.53 % Quartz 54,000-Chlorite Ilb 6.89 % 23.44 % 52,000-Muscovite 2M1 Albite 12.59 % 50,000 Microcline intermediate1 0.97 % 48,000-Siderite 4.93 % 46,000 Illite 7.10 % 44,000 -Kaolinite 5.56 % 42,000 40,000 38,000 36,000 -34,000-32,000-30,000 -28,000-26,000 24,000 22,000-20,000-18,000-16,000 14,000-12,000 10,000 8,000 6,000-4,000 2,000 0 -2,000 -4,000 -6,000 -8,000 -10,000 -12,000 -14,000--16,000--18,000 -20,000 1 i al la c^{er}te de **la companya d**e la **companya d**e la companya de la compa 1 Hu 900-09 1011 -22,000-. 00.000 H 10, 11 9.946 Mart 44 10.00 IN IN 40 42 44 46 2Th Degrees 48 50 52 54 58 66 68 70 72 74 76 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 56 60 62 64 78

VER-35 55-60 20230624

WVER-35 55-60 20230624 - File: AUG4526-1 glc.raw WVER-35 55-60 20230624 - File: AUG4526-1 400.raw

VER-35 55-60 20230624 - File: AUG4526-1 400.12W

VER-35 60-63 20230624

Environmental Services Custom XRD/MI4526-AUG23 13-Sep-23

VER-35 60-63 20230624

MVER-35 60-63 20230624 - File: AUG4526-2 untrd.raw MVER-35 60-63 20230624 - File: AUG4526-2 glc.raw MVER-35 60-63 20230624 - File: AUG4526-2 400.raw MVER-35 60-63 20230624 - File: AUG4526-2 550.raw

VER-70 30-40 20230623 60,000 - AUG4526-3 riet.raw_1 48.61 % Quartz Chlorite Ilb 1.20 % 58,000 Muscovite 2M1 13.50 % 56,000 Albite 10.61 % 54,000-Microcline intermediate1 1.34 % 52,000 0.86 % Siderite 50,000-Illite 7.43 % 48,000 -Kaolinite 3.15 % 46,000 -Actinolite 0.83 % 44,000 Dolomite 11.67 % 42,000 Montmorillonite-15A 0.79 % 40,000 38,000 36,000-34,000 32.000-30,000 -28,000 26,000-24,000 22,000 20,000 18,000-16,000 14,000 12,000-10,000 -8,000-6,000-4,000 2,000--2,000 -4,000 -6.000--8,000 -10,000 --12,000 -14.000 -16,000 --18,000 -20,000 . Im' din Mili 1.1.1 -22,000--24,000-1 - 1 $W(n,\mu)$ a na 17 ha d' 1.11 -26,000 1111 101 C າມ ມາຍ ໃນໜ້ CHO 1 10 10 I I uul 1.0 ШÚ -28,000 40 42 44 46 2Th Degrees 48 50 52 54 56 58 60 62 68 70 72 74 76 78 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 64 66

VER-70 30-40 20230623

WER-70 30-40 20230623 - File: AUG4526-3 400.raw

WER-70 30-40 20230623 - File: AUG4526-3 550.raw

VER-70 41-42 20230623 60,000 - AUG4526-4 riet.raw_1 48.18 % Quartz 3.61 % Chlorite Ilb 58,000 -15.19 % Muscovite 2M1 56,000 Albite 10.84 % 54,000-Microcline intermediate1 1.07 % 52,000 0.07 % Siderite 50,000-Illite 5.63 % 48,000-Kaolinite 3.72 % 46,000 -Dolomite 11.70 % 44,000-42,000 40,000 38,000 36,000-34,000 32.000-30,000 -28,000 26,000-24,000 22,000-20,000 18,000-16,000 14,000 12,000-10,000 -8,000-6,000-4,000 2,000--2,000 -4,000 -6.000--8,000 -10,000 --12,000 --14,000 -16,000 --18,000 -20,000 -22,000- \ln^{1} н[∎] ille) -24,000 -26,000 Н п 1.1 <u>։ Դինին հետ հանրանները հե</u> ւ հանդանին հայ էն։ i di si di kata di kata հիսեսես ÷. 11 1.1 ζuu -28,000-40 42 44 46 2Th Degrees 50 74 24 40 46 52 54 56 58 64 66 68 70 72 76 6 8 10 12 14 16 18 20 22 26 28 30 32 34 36 38 48 60 62 78

Environmental Services Custom XRD/MI4526-AUG23 13-Sep-23

VER-70 41-42 20230623

WER-70 41-42 20230623 - File: AUG4526-4 400.raw WER-70 41-42 20230623 - File: AUG4526-4 550.raw

VER-70 75-80 20230623

Environmental Services Custom XRD/MI4526-AUG23 13-Sep-23

VER-70 75-80 20230623

WVER-70 75-80 20230623 - File: AUG4526-5 untrd.raw WVER-70 75-80 20230623 - File: AUG4526-5 glc.raw WVER-70 75-80 20230623 - File: AUG4526-5 400.raw WVER-70 75-80 20230623 - File: AUG4526-5 400.raw

ATTACHMENT 5 Principal Component Analysis Input Data

ELECTRONIC PCA DATA FOR ATTACHMENT 5

35 I.A.C. § 845: ALTERNATIVE SOURCE DEMONSTRATION VERMILION POWER PLANT NEW EAST ASH POND OAKWOOD, IL

Well	HSU	Date	Well Type	рН (SU)	Alkalinity, bicarbonate	Alkalinity, carbonate	Barium (mg/L)	Boron (mg/L)	Calcium	Chloride	Fluoride
					(mg/L)	(mg/L)			(mg/L)	(mg/L)	(mg/L)
16A	BCU	4/1/2021	Downgradient	7.50	390	1.5	0.261	0.675	40.8	131	0.77
16A	BCU	4/21/2021	Downgradient	7.20	407	1.5	0.335	0.613	71.10	106	0.64
16A	BCU	5/11/2021	Downgradient	7.40	361	1.5	0.245	0.807	36.6	139	0.78
16A	BCU	6/3/2021	Downgradient	7.20	405	1.5	0.272	0.716	51.60	128	0.68
16A	BCU	6/1//2021	Downgradient	7.40	406	1.5	0.251	0.746	42.20	144	0.78
16A	BCU	7/0/2021	Downgradient	7.51	300	1.5	0.249	0.766	30.00	163	0.77
16A	BCU	8/17/2021	Downgradient	7.50	390	1.5	0.248	0.794	33.30	176	0.84
35D	BCU	4/1/2021	Downgradient	8.20	707	1.5	0.111	2.01	112.0	529	0.76
35D 35D	BCU	4/21/2021	Downgradient	7.76	533	1.5	0.0294	1.8	93.60	281	0.65
35D 35D	BCU	6/3/2021	Downgradient	7.25	637	1.5	0.0546	2.5	98.10	461	0.75
35D	BCU	6/17/2021	Downgradient	7.25	603	1.5	0.14	1.8	99.40	393	0.75
35D	BCU	7/8/2021	Downgradient	7.22	582	1.5	0.0297	1.9	86.00	372	0.74
35D	BCU	7/27/2021	Downgradient	7.37	507	1.5	0.0263	1.5	70.40	234	0.79
35D	BCU	8/17/2021	Downgradient	7.30	491	1.5	0.0269	1.4	65.7	199	0.76
70D	BCU	4/1/2021	Downgradient	7.60	262	1.5	0.3360	0.712	39.6	317	0.76
70D	BCU	4/21/2021	Downgradient	7.28	334	1.5	0.521	1.01	48.1	517	0.57
70D	BCU	6/3/2021	Downgradient	7.03	416	1.5	0.687	1.56	68.6	665	0.47
70D	BCU	6/17/2021	Downgradient	7.14	443	1.5	0.7260	1.33	73.1	680	0.5
70D	BCU	7/8/2021	Downgradient	6.85	527	1.5	0.954	1.58	82.5	735	0.41
70D	BCU	7/27/2021	Downgradient	6.96	540	1.5	0.734	1.54	78.1	745	0.44
70D	BCU	8/17/2021	Downgradient	6.84	610	1.5	0.761	1.54	91.5	716	0.36
71D	BCU	4/1/2021	Downgradient	7.60	258	1.5	0.299	0.58	37.7	172	0.92
71D	BCU	6/17/2021	Downgradient	7.15	475	1.5	0.4	1.1	28.7	563	0.73
71D	BCU	8/17/2021	Downgradient	6.95	628	1.5	0.677	1.3	34.9	674	0.56
22	BCU	4/1/2021	Upgradient	7.40	390	1.5	0.0723	0.41	41.5	23	0.43
22	BCU	4/20/2021	Upgradient	7.58	407	1.5	0.0798	0.4	37.5	11	0.4000
22	BCU	5/10/2021	Upgradient	7.29	395	1.5	0.0795	0.433	45.7	11	0.4200
22	BCU	6/3/2021	Upgradient	7.26	390	1.5	0.0787	0.361	48.3	7	0.3800
22	BCU	6/17/2021	Upgradient	7.23	406	1.5	0.0791	0.377	50.3	7	0.3900
22	BCU	7/8/2021	Upgradient	7.20	412	1.5	0.082	0.348	47.7	/	0.37
22	BCU	7/2//2021	Upgradient	7.34	401	1.5	0.0795	0.311	48.2	/	0.39
	BCU	8/1//2021	Upgradient	9.20	402	1.5	0.0785	0.34	47.1	/	0.38
		4/1/2021	CCR	8.86	1.5	61	0.032	10.0	497.0	44 22	0.3200
		5/11/2021		7.88	4	1.5	0.029	14	472.0	18	0.3800
NED1	CCR	6/4/2021	CCR	7.55	117	1.5	0.0207	13.5	532.0	18	0.2
NED1	CCR	8/17/2021	CCR	8.73	18	41	0.0314	18.3	531.0	25	0.24
10		4/1/2021		6.80	550	1.5	0.079	0.0587	182.0	6	0.13
10	UCU	4/21/2021	Upgradient	6.80	546	1.5	0.047	0.0587	193.0	6	0.14
10	UCU	5/10/2021	Upgradient	6.76	476	1.5	0.068	0.053	160.0	4	0.14
10	UCU	6/3/2021	Upgradient	6.74	579	1.5	0.0795	0.0835	186.0	5	0.14
10	UCU	6/17/2021	Upgradient	6.76	550	1.5	0.0625	0.111	186.0	6	0.14
10	UCU	7/8/2021	Upgradient	6.69	561	1.5	0.068	0.0499	166.0	5	0.13
10	UCU	7/27/2021	Upgradient	6.80	550	1.5	0.0712	0.237	182.0	4	0.14
10	UCU	8/17/2021	Upgradient	6.69	582	1.5	0.0772	0.0695	192.0	5	0.13
705	UU	4/1/2021	Downgradient	7.00	310	1.5	0.018	0.457	253.0	19	0.14
705	UU	4/21/2021	Downgradient	6.94	270	1.5	0.0205	0.403	281.0	17	0.14
705	UU	5/10/2021	Downgradient	6.99	262	1.5	0.0185	0.382	270.0	16	0.14
705	UU	6/3/2021	Downgradient	6.91	272	1.5	0.0165	0.424	245.0	15	0.14
705	UU	6/17/2021	Downgradient	6.85	278	1.5	0.0187	0.363	250.0	15	0.15
705	UU	7/8/2021	Downgradient	6.80	305	1.5	0.0172	0.253	220.0	14	0.16
705	UU	7/27/2021	Downgradient	7.01	287	1.5	0.01	0.556	229.0	11	0.17
705	UU	8/17/2021	Downgradient	6.87	272	1.5	0.02	0.538	232.0	15	0.16
715	UU	4/1/2021	Downgradient	6.90	422	1.5	0.0476	0.179	115.0	2	0.18
715	UU	4/21/2021	Downgradient	6./3	419	1.5	0.0534	0.215	116.0	3	0.17
715	00	5/12/2021	Downgradient	6.84	403	1.5	0.0487	0.227	124.0	3	0.18
715	00	6/3/2021	Downgradient	0./1	419	1.5	0.0446	0.229	116.0	2	0.18
/15	00	6/1//2021	Downgradient	0.70	422	1.5	0.0421	0.219	117.0	2	0.19
/15	00	7/8/2021	Downgradient	0.00	462	1.5	0.0493	0.1/3	128.0	2	0.19
/15	00	//2//2021	Downgradient	0.03	421	1.5	0.0462	0.251	132.0	2	0.2
/15	UU	0/1//2021	Downgradient	0./3	442	1.5	0.0672	0.272	122.0	3	0.19

Notes:

mg/L = milligrams per liter

SU= standard units

HSU = hydrostratigraphic unit

CCR = coal combustion residual

BCU = Bedrock Confining Unit

UCU = Upper Confining Unit

UU = Upper Unit

Non-detect values were replaced with half of detection limit.

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY 1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 · (217) 782-3397 JB PRITZKER, GOVERNOR JOHN J. KIM, DIRECTOR

21/-/82-10.

December 28, 2023

Dianna Tickner Dynegy Midwest Generation, LLC 1500 Eastport Plaza Drive Collinsville, Illinois 62234

Re: Vermilion Power Plant East Power Plant New East Ash Pond; W1838000002-4 Alternate Source Demonstration (ASD) Submittal

Dear Mrs. Tickner:

The purpose of this correspondence is to notify you that the Illinois Environmental Protection Agency (Illinois EPA) does not concur with the Vermilion New East Ash Pond System Alternative Source Demonstration (ASD) dated December 1, 2023. The Illinois EPA does not concur due to the following data gaps:

- Characterization that the draw water from the bedrock is completely isolated from local groundwater flow system.
- No assessment of the interaction between bedrock groundwater and the old east pond. Based on Fig.1 shows to be upgradient of the New East Ash Pond.
- Lack of analysis of the leachable metals from the CCR in the New East Ash Pond.

If you have any questions, please contact: **Justin Bierwagen** Illinois EPA, Bureau of Water, Groundwater Section DPWS #13, P.O. Box 19276, Springfield, Illinois 62794-9276. If you have any questions concerning the investigation described above, please call 217-782-1020.

Sincerely,

Auso

Michael Summers, P.G. Manager, Groundwater Section Division of Public Water Supplies Bureau of Water

cc: Justin Bierwagen Lynn Dunaway Keegan MacDonna Records 06M

2125 S. First Street, Champaign, IL 61820 (217) 278-5800 1101 Eastport Plaza Dr., Suite 100, Collinsville, IL 62234 (618) 346-5120 9511 Harrison Street, Des Plaines, IL 60016 (847) 294-4000 595 S. State Street, Elgin, IL 60123 (847) 608-3131

2309 W. Main Street, Suite 116, Marion, IL 62959 (618) 993-7200 412 SW Washington Street, Suite D, Peoria, IL 61602 (309) 671-3022 4302 N. Main Street, Rockford, IL 61103 (815) 987-7760

ATTACHMENT C CORRECTIVE MEASURES ASSESSMENT EXTENSION REQUEST AND IEPA APPROVAL LETTER

Dynegy Midwest Generation, LLC 10188 East 2150 North Road Danville, IL 61834

January 2, 2024

Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794-9276

Re: Vermilion New East Ash Pond (IEPA ID: W1838000002-04), Corrective Measures Assessment Schedule Extension Demonstration

Dear Mr. LeCrone:

In accordance with 35 I.A.C. § 845.660(a)(2), Dynegy Midwest Generation, LLC (DMG) is submitting a schedule extension demonstration for completing the Corrective Measures Assessment (CMA) for the New East Ash Pond (IEPA ID: W1838000002-04) at the Vermilion Power Plant, as enclosed.

Sincerely,

Dianna Sickner

Dianna Tickner, P.E., PMP Senior Director, Decommissioning & Demolition

Enclosures

INTRODUCTION AND BACKGROUND

Exceedances of the groundwater protection standards (GWPS) listed in Title 35 of the Illinois Administrative Code (35 I.A.C.) §845.600 have been detected at the New East Ash Pond (NEAP, Illinois Environmental Protection Agency [IEPA] Identification [ID]: W1838000002-04) at the Vermilion Power Plant (VPP). The GWPS exceedances are documented in the Quarter 2, 2023 groundwater monitoring report that was prepared by Ramboll Americas Engineering Solutions, Inc. (Ramboll) and submitted to IEPA on October 2, 2023 [1].

In accordance with 35 I.A.C. § 845.660, Dynegy Midwest Generation, LLC (DMG) initiated a Corrective Measures Assessment (CMA) on December 31, 2023, which was within 90 days of the exceedance detection. Upon reviewing site-specific conditions, circumstances, and information gathered to-date, DMG has determined, in accordance with 35 I.A.C. § 845.660(a)(2), that an additional 60 days will be required to complete the CMA. This extension of the CMA deadline would result in the CMA for the NEAP being submitted to IEPA on or before May 29, 2024.

DEMONSTRATION

As discussed below, there are two site-specific conditions or circumstances at the NEAP that justify the need for a 60-day extension of the default CMA deadline.

Circumstance 1: Potential Physical Conflicts with Closure, Other Onsite Construction Projects, Adjacent Water Bodies and Recreational Areas, Floodplains, Historical Mining, and Existing Utilities

The evaluation of performance and reliability of corrective measures for the NEAP will be complicated by the physical challenges and constraints that may impact effective implementation of corrective measures at the site. These challenges include, but are not limited to:

- Closure of the NEAP, in accordance with the closure plan and construction permit application submitted to IEPA on January 28, 2022, will be an ongoing construction project that may affect the implementation of corrective action [2].
 - The NEAP will be closed by removal of CCR. This will include removing impounded water, dewatering the CCR, excavating approximately 380,000 cubic yards of CCR, placing the excavated material in a new onsite landfill, and breaching the NEAP dikes after completion [2].
 - CCR removal activities will be completed over a period of approximately 4 years, although other site preparation activities will occur over several years prior to initiating CCR removal [2].
- Multiple other ongoing construction projects will be occurring at the Vermilion Power Plant over the next 10 years. These ongoing construction projects may also affect the implementation of correction action.
 - A new onsite landfill will be constructed to receive CCR excavated from the NEAP, in addition to the Old East Ash Pond (OEAP) and North Ash Pond (NAP), both of which will also be closed by removing CCR [3].
 - Construction of the onsite landfill, which will be approximately 27 acres in size, will require demolishing the existing Vermilion Power Plant and other appurtenant structures.
 - Closure by removal of the NEAP, OEAP, and NAP will be significant construction projects, requiring the excavation of approximately 2.2 million cubic yards of CCR and underlying soils [3] over a period of 4 years, although other site preparation activities will occur over several years prior to initiating CCR removal [4].
- The NEAP is adjacent to the Middle Fork of the Vermilion River, which is a National Wild and Scenic River and a popular recreational area for canoeing and fishing, in addition to proving habitat for a diverse range of wildlife species [5].

- Areas adjacent to the NEAP are within the 100-year and 500-year floodplains of the Vermilion River, per Federal Emergency Management Agency (FEMA) floodplain mapping for the site [6].
- The NEAP is known to be underlain by a historical coal mine, based on historical data and site borings associated with the permitting and design of the NEAP. The coal mine has multiple features which may prove challenging during the evaluation of corrective measures, including, but not limited to, collapse features, artesian water pressures, and hydrogen sulfide gas [7].
- The NEAP is crossed by an existing electrical transmission line which leads from the area southwest of the NEAP, has poles located in the NEAP embankment, and crosses the Vermilion River to the east [2]. This transmission line will remain in place after closure.

These factors will require substantial additional effort to evaluate the physical location and dimensions of any proposed corrective action which avoids adverse impacts to the proposed closure of the NEAP, proposed closure of the NAP and OEAP, proposed new onsite landfill construction, sensitive recreational and wildlife habitat areas, floodplains, challenging features associated with past coal mining activities, and existing infrastructure.

Circumstance 2: Ongoing Fieldwork and Additional Data Collection

The reliability of monitored natural attenuation (MNA) to attain groundwater protection standards (GWPS) is currently under evaluation. DMG is in the process of evaluating the results of additional recent fieldwork and data collection associated with the evaluation of monitored natural attenuation (MNA) as a corrective measure for the NEAP. The fieldwork included new soil borings, collection of soil samples, and geochemical testing. The results of this fieldwork and data collection will be utilized to evaluate the reliability, including the potential for reversibility, of MNA relative to other types of corrective measures.

REFERENCES

- [1] Ramboll Americas Engineering Solutions, Inc., "35 I.A.C. § 845.610(B)(3)(D) Groundwater Monitoring Data and Detected Exceedances, Quarter 2, 2023, New East Ash Pond, Vermilion Power Plant," October 2, 2023.
- [2] Geosyntec Consultants, "Construction Permit Application, Vermilion Power Plant, New East Ash Pond, Oakwood, Illinois," January 2022.
- [3] Geosyntec Consultants, "Proposed On-site Landfill Feasibility Study, Vermilion Power Plant, Oakwood, Illinois," January 2022.
- [4] Geosyntec Consultants, "Construction Permit Application, Vermilion Power Plant, Old East Ash Pond Area, North Ash Pond Area, Oakwood, Illinois," January 2022.
- [5] National Wild and Scenic River System, "Middle Fork Vermilion River," Rivers.gov, [Online]. Available: https://www.rivers.gov/rivers/river/vermilion-middle-fork#.
- [6] Federal Emergency Management Agency, "Flood Insurance Rate Map, Vermilion County, Illinois and Incorporated Areas," National Flood Insurance Program, May 16, 2012.
- [7] Kelron Environmental , "Regional and Local Hydrogeology and Geochemistry, Vermilion Power Plant, Illinois," November 30, 2003.

Corrective Measures Assessment Schedule Extension Request; 35 I.A.C. § 845.660(a)(2) Dynegy Midwest Generation, LLC; Vermilion Power Plant New East Ash Pond; IEPA ID: W183800002-04

CERTIFICATION STATEMENT

CCR Unit:Dynegy Midwest Generation, LLC; Vermilion Power Plant, New East Ash PondIEPA ID:W183800002-04

I, Lucas P. Carr, being a Registered Professional Engineer in good standing with the state of Illinois, do herby certify, to the best of my knowledge, information, and belief that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR unit, that the 60-day extension demonstration for the Corrective Measures Assessment has been prepared in accordance with 35 I.A.C. § 845.600(a)(2) and is accurate.

-P.Z

Lucas P. Carr, P.E. Senior Managing Consultant

1/2/2024

Date

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 · (217) 782-3397 JB Pritzker, Governor John J. Kim, Director

217-782-1020

January 3, 2024

Dianna Tickner Electric Energy, Inc. 1500 Eastport Plaza drive Collinsville, Illinois 62234

Re: Vermilion New East Ash Pond (W1838000002-04) Corrective Measures Assessment Schedule Extension Request

Dear Mrs. Tickner:

The purpose of this correspondence is to notify you that the Illinois Environmental Protection Agency (Illinois EPA) approves of the extension request submitted on January 2, 2024, for completing the Corrective Measures Assessment (CMA).

If you have any questions, please contact: **Justin Bierwagen** Illinois EPA, Bureau of Water, PWS #13, P.O. Box 19276, Springfield, Illinois 62794-9276. If you have any questions concerning the extension approval described above, please call 217-782-1020.

Sincerely,

Darin E. LeCrone, P.È. Manager, Permit Section Division of Water Pollution Control Illinois Environmental Protection Agency

cc: Justin Bierwagen Keegan Macdonna Phil Morris Records Files 06M – W1838000002

2125 S. First Street, Champaign, IL 61820 (217) 278-5800 1101 Eastport Plaza Dr., Suite 100, Collinsville, IL 62234 (618) 346-5120 9511 Harrison Street, Des Plaines, IL 60016 (847) 294-4000 595 S. State Street, Elgin, IL 60123 (847) 608-3131

2309 W. Main Street, Suite 116, Marion, IL 62959 (618) 993-7200 412 SW Washington Street, Suite D, Peoria, IL 61602 (309) 671-3022 4302 N. Main Street, Rockford, IL 61103 (815) 987-7760

ATTACHMENT D COMPARISON OF STATISTICAL RESULTS TO BACKGROUND

- ATTACHMENT C FROM THE QUARTER 2, 2023 GROUNDWATER MONITORING DATA AND DETECTED EXCEEDANCES REPORT (RAMBOLL, 2023a)
- ATTACHMENT C FROM THE QUARTER 3, 2023 GROUNDWATER MONITORING DATA AND DETECTED EXCEEDANCES REPORT (RAMBOLL, 2023b)

ATTACHMENT C. COMPARISON OF STATISTICAL RESULTS TO BACKGROUND - QUARTER 2, 2023

845 QUARTERLY REPORT VERMILION POWER PLANT NEW EAST ASH POND OAKWOOD, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
35D	BCU	E001	Antimony, total	mg/L	04/01/21 - 06/29/23	9	67	CI around median	0.001	0.00500
35D	BCU	E001	Arsenic, total	mg/L	04/01/21 - 06/29/23	9	11	CI around mean	0.00142	0.001
35D	BCU	E001	Barium, total	mg/L	04/01/21 - 06/29/23	9	0	CI around median	0.0261	0.0820
35D	BCU	E001	Beryllium, total	mg/L	04/01/21 - 06/29/23	9	100	All ND - Last	0.0005	0.001
35D	BCU	E001	Boron, total	mg/L	04/01/21 - 06/29/23	9	0	CI around mean	1.52	0.430
35D	BCU	E001	Cadmium, total	mg/L	04/01/21 - 06/29/23	9	100	All ND - Last	0.002	0.001
35D	BCU	E001	Chloride, total	mg/L	04/01/21 - 06/29/23	9	0	CI around mean	251	20.4
35D	BCU	E001	Chromium, total	mg/L	04/01/21 - 06/29/23	9	67	CI around median	0.0015	0.00400
35D	BCU	E001	Cobalt, total	mg/L	04/01/21 - 06/29/23	9	22	CI around mean	0.000677	0.0900
35D	BCU	E001	Fluoride, total	mg/L	04/01/21 - 06/29/23	9	0	CI around mean	0.688	0.430
35D	BCU	E001	Lead, total	mg/L	04/01/21 - 06/29/23	9	44	CI around geomean	0.000903	0.001
35D	BCU	E001	Lithium, total	mg/L	04/01/21 - 06/29/23	9	0	CI around mean	0.104	0.0300
35D	BCU	E001	Mercury, total	mg/L	04/01/21 - 06/29/23	9	100	All ND - Last	0.0002	0.0002
35D	BCU	E001	Molybdenum, total	mg/L	04/01/21 - 06/29/23	9	11	CI around mean	0.0125	0.00400
35D	BCU	E001	pH (field)	SU	04/01/21 - 06/29/23	13	0	CI around median	7.2/7.7	6.3/7.8
35D	BCU	E001	Radium 226 + Radium 228, total	pCi/L	04/01/21 - 06/29/23	9	0	CI around mean	0.28	7.00
35D	BCU	E001	Selenium, total	mg/L	04/01/21 - 06/29/23	9	100	All ND - Last	0.001	0.001
35D	BCU	E001	Sulfate, total	mg/L	04/01/21 - 06/29/23	14	0	CI around mean	1,040	338
35D	BCU	E001	Thallium, total	mg/L	04/01/21 - 06/29/23	9	100	All ND - Last	0.002	0.002
35D	BCU	E001	Total Dissolved Solids	mg/L	04/01/21 - 06/29/23	14	0	CI around mean	2,560	1,080
70S	UU	E001	Antimony, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.001	0.00500
70S	UU	E001	Arsenic, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.01	0.001
70S	UU	E001	Barium, total	mg/L	04/01/21 - 06/21/23	9	0	CI around mean	0.0163	0.0820
70S	UU	E001	Beryllium, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.0005	0.001
70S	UU	E001	Boron, total	mg/L	04/01/21 - 06/21/23	9	0	CI around mean	0.331	0.430
705	UU	E001	Cadmium, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.002	0.001
70S	UU	E001	Chloride, total	mg/L	04/01/21 - 06/21/23	9	0	CB around linear reg	5.54	20.4

ATTACHMENT C. COMPARISON OF STATISTICAL RESULTS TO BACKGROUND - QUARTER 2, 2023

845 QUARTERLY REPORT VERMILION POWER PLANT NEW EAST ASH POND OAKWOOD, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
70S	UU	E001	Chromium, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.005	0.00400
70S	UU	E001	Cobalt, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.001	0.0900
70S	UU	E001	Fluoride, total	mg/L	04/01/21 - 06/21/23	9	0	CI around mean	0.139	0.430
70S	UU	E001	Lead, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.0075	0.001
70S	UU	E001	Lithium, total	mg/L	04/01/21 - 06/21/23	9	0	CI around mean	0.0116	0.0300
70S	UU	E001	Mercury, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.0002	0.0002
70S	UU	E001	Molybdenum, total	mg/L	04/01/21 - 06/21/23	9	11	CI around mean	0.00499	0.00400
70S	UU	E001	pH (field)	SU	04/01/21 - 06/21/23	9	0	CI around mean	6.9/7.0	6.3/7.8
70S	UU	E001	Radium 226 + Radium 228, total	pCi/L	04/01/21 - 06/21/23	9	0	CI around geomean	0.0683	7.00
70S	UU	E001	Selenium, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.001	0.001
70S	UU	E001	Sulfate, total	mg/L	04/01/21 - 06/21/23	9	0	CI around mean	587	338
70S	UU	E001	Thallium, total	mg/L	04/01/21 - 06/21/23	9	100	All ND - Last	0.002	0.002
705	UU	E001	Total Dissolved Solids	mg/L	04/01/21 - 06/21/23	9	0	CI around mean	1,210	1,080
70D	BCU	E001	Antimony, total	mg/L	04/01/21 - 06/20/23	9	78	CI around median	0.001	0.00500
70D	BCU	E001	Arsenic, total	mg/L	04/01/21 - 06/20/23	9	44	CI around mean	0.000424	0.001
70D	BCU	E001	Barium, total	mg/L	04/01/21 - 06/20/23	9	0	CI around mean	0.465	0.0820
70D	BCU	E001	Beryllium, total	mg/L	04/01/21 - 06/20/23	9	67	CI around median	0.001	0.001
70D	BCU	E001	Boron, total	mg/L	04/01/21 - 06/20/23	9	0	CI around mean	1.05	0.430
70D	BCU	E001	Cadmium, total	mg/L	04/01/21 - 06/20/23	9	100	All ND - Last	0.002	0.001
70D	BCU	E001	Chloride, total	mg/L	04/01/21 - 06/20/23	9	0	CI around mean	492	20.4
70D	BCU	E001	Chromium, total	mg/L	04/01/21 - 06/20/23	9	11	CI around mean	-0.00202	0.00400
70D	BCU	E001	Cobalt, total	mg/L	04/01/21 - 06/20/23	9	11	CI around mean	-0.00324	0.0900
70D	BCU	E001	Fluoride, total	mg/L	04/01/21 - 06/20/23	9	0	CB around linear reg	-0.0206	0.430
70D	BCU	E001	Lead, total	mg/L	04/01/21 - 06/20/23	9	11	CI around mean	-0.00239	0.001
70D	BCU	E001	Lithium, total	mg/L	04/01/21 - 06/20/23	9	0	CI around mean	0.0661	0.0300
70D	BCU	E001	Mercury, total	mg/L	04/01/21 - 06/20/23	9	100	All ND - Last	0.0002	0.0002
70D	BCU	E001	Molybdenum, total	mg/L	04/01/21 - 06/20/23	9	11	CB around linear reg	-0.0508	0.00400
Dara						2 of 4				RAMBOLL

ATTACHMENT C. COMPARISON OF STATISTICAL RESULTS TO BACKGROUND - QUARTER 2, 2023

845 QUARTERLY REPORT VERMILION POWER PLANT NEW EAST ASH POND OAKWOOD, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
70D	BCU	E001	pH (field)	SU	04/01/21 - 06/20/23	9	0	CB around linear reg	5.9/7.5	6.3/7.8
70D	BCU	E001	Radium 226 + Radium 228, total	pCi/L	04/01/21 - 06/20/23	9	0	CI around mean	0.928	7.00
70D	BCU	E001	Selenium, total	mg/L	04/01/21 - 06/20/23	9	78	CI around median	0.001	0.001
70D	BCU	E001	Sulfate, total	mg/L	04/01/21 - 06/20/23	9	0	CI around mean	48	338
70D	BCU	E001	Thallium, total	mg/L	04/01/21 - 06/20/23	9	100	All ND - Last	0.002	0.002
70D	BCU	E001	Total Dissolved Solids	mg/L	04/01/21 - 06/20/23	9	0	CB around linear reg	469	1,080
71D	BCU	E001	Antimony, total	mg/L	04/01/21 - 06/20/23	5	60	CI around median (Last Sample, n<7)	0.001	0.00500
71D	BCU	E001	Arsenic, total	mg/L	04/01/21 - 06/20/23	5	40	CI around mean	-0.00633	0.001
71D	BCU	E001	Barium, total	mg/L	04/01/21 - 06/20/23	5	0	CI around mean	0.0634	0.0820
71D	BCU	E001	Beryllium, total	mg/L	04/01/21 - 06/20/23	5	80	CI around median (Last Sample, n<7)	0.0005	0.001
71D	BCU	E001	Boron, total	mg/L	04/01/21 - 06/20/23	5	0	CI around mean	0.487	0.430
71D	BCU	E001	Cadmium, total	mg/L	04/01/21 - 06/20/23	5	100	All ND - Last	0.002	0.001
71D	BCU	E001	Chloride, total	mg/L	04/01/21 - 06/20/23	5	0	CI around mean	124	20.4
71D	BCU	E001	Chromium, total	mg/L	04/01/21 - 06/20/23	5	20	CI around geomean	0.000681	0.00400
71D	BCU	E001	Cobalt, total	mg/L	04/01/21 - 06/20/23	5	20	CI around geomean	0.000372	0.0900
71D	BCU	E001	Fluoride, total	mg/L	04/01/21 - 06/20/23	5	0	CI around mean	0.427	0.430
71D	BCU	E001	Lead, total	mg/L	04/01/21 - 06/20/23	5	20	CI around geomean	0.000428	0.001
71D	BCU	E001	Lithium, total	mg/L	04/01/21 - 06/20/23	5	0	CI around mean	0.0156	0.0300
71D	BCU	E001	Mercury, total	mg/L	04/01/21 - 06/20/23	5	100	All ND - Last	0.0002	0.0002
71D	BCU	E001	Molybdenum, total	mg/L	04/01/21 - 06/20/23	5	20	CI around mean	0.00646	0.00400
71D	BCU	E001	pH (field)	SU	04/01/21 - 06/20/23	4	0	CI around mean	6.4/7.9	6.3/7.8
71D	BCU	E001	Radium 226 + Radium 228, total	pCi/L	04/01/21 - 06/20/23	5	0	CI around mean	-0.807	7.00
71D	BCU	E001	Selenium, total	mg/L	04/01/21 - 06/20/23	5	80	CI around median (Last Sample, n<7)	0.001	0.001
71D	BCU	E001	Sulfate, total	mg/L	04/01/21 - 06/20/23	5	0	CI around mean	34.8	338
71D	BCU	E001	Thallium, total	mg/L	04/01/21 - 06/20/23	5	100	All ND - Last	0.002	0.002
71D	BCU	E001	Total Dissolved Solids	mg/L	04/01/21 - 06/20/23	5	0	CI around mean	639	1,080

ATTACHMENT C.

COMPARISON OF STATISTICAL RESULTS TO BACKGROUND - QUARTER 2, 2023 845 QUARTERLY REPORT VERMILION POWER PLANT NEW EAST ASH POND OAKWOOD, IL

Notes:

Lower Confidence Limit (LCL) or Upper Confidence Limit (UCL) exceeded the statistical background value HSU = hydrostratigraphic unit:

BCU = Bedrock Confining Unit

UU = Upper Unit

mg/L = milligrams per liter

ND = non-detect pCi/L = picocuries per liter

SU = standard units

Sample Count = number of samples from Sampled Date Range used to calculate the Statistical Result Statistical Calculation = method used to calculate the statistical result:

All ND - Last = All results were below the reporting limit, and the last determined reporting limit is shown

CB around linear reg = Confidence band around linear regression

CI around geomean = Confidence interval around the geometric mean

CI around mean = Confidence interval around the mean

CI around median = Confidence interval around the median

Statistical Result = calculated in accordance with the Statistical Analysis Plan using constituent concentrations observed at each monitoring well during all sampling events within the specified date range For pH, the values presented are the lower / upper limits of the background determination

ATTACHMENT C. COMPARISON OF STATISTICAL RESULTS TO BACKGROUND - QUARTER 3, 2023

845 QUARTERLY REPORT VERMILION POWER PLANT NEW EAST ASH POND OAKWOOD, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
16A	BCU	E002	Antimony, total	mg/L	04/01/21 - 09/21/23	9	89	CI around median	0.001	0.00500
16A	BCU	E002	Arsenic, total	mg/L	04/01/21 - 09/21/23	9	0	CI around mean	0.000978	0.001
16A	BCU	E002	Barium, total	mg/L	04/01/21 - 09/21/23	9	0	CI around mean	0.24	0.0820
16A	BCU	E002	Beryllium, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.001	0.001
16A	BCU	E002	Boron, total	mg/L	04/01/21 - 09/21/23	9	0	CI around mean	0.678	0.430
16A	BCU	E002	Cadmium, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.0005	0.001
16A	BCU	E002	Chloride, total	mg/L	04/01/21 - 09/21/23	9	0	CI around mean	121	20.4
16A	BCU	E002	Chromium, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.005	0.00400
16A	BCU	E002	Cobalt, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.001	0.0900
16A	BCU	E002	Fluoride, total	mg/L	04/01/21 - 09/21/23	9	11	CI around mean	0.628	0.430
16A	BCU	E002	Lead, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.0005	0.001
16A	BCU	E002	Lithium, total	mg/L	04/01/21 - 09/21/23	9	0	CI around mean	0.0291	0.0300
16A	BCU	E002	Mercury, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.0002	0.0002
16A	BCU	E002	Molybdenum, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.005	0.00400
16A	BCU	E002	pH (field)	SU	04/01/21 - 09/21/23	14	0	CI around median	7.2/7.4	6.3/7.8
16A	BCU	E002	Selenium, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.0025	0.001
16A	BCU	E002	Sulfate, total	mg/L	04/01/21 - 09/21/23	14	5	CI around mean	14.5	338
16A	BCU	E002	Thallium, total	mg/L	04/01/21 - 09/21/23	9	100	All ND - Last	0.002	0.002
16A	BCU	E002	Total Dissolved Solids	mg/L	04/01/21 - 09/21/23	14	0	CI around mean	640	1,080
35D	BCU	E002	Antimony, total	mg/L	04/01/21 - 09/22/23	10	70	CI around median	0.001	0.00500
35D	BCU	E002	Arsenic, total	mg/L	04/01/21 - 09/22/23	10	10	CI around mean	0.0016	0.001
35D	BCU	E002	Barium, total	mg/L	04/01/21 - 09/22/23	10	0	CI around median	0.0261	0.0820
35D	BCU	E002	Beryllium, total	mg/L	04/01/21 - 09/22/23	10	100	All ND - Last	0.001	0.001
35D	BCU	E002	Boron, total	mg/L	04/01/21 - 09/22/23	10	0	CI around mean	1.55	0.430
35D	BCU	E002	Cadmium, total	mg/L	04/01/21 - 09/22/23	10	100	All ND - Last	0.0005	0.001
35D	BCU	E002	Chloride, total	mg/L	04/01/21 - 09/22/23	10	0	CI around mean	271	20.4
35D	BCU	E002	Chromium, total	mg/L	04/01/21 - 09/22/23	10	70	CI around median	0.0015	0.00400

ATTACHMENT C. COMPARISON OF STATISTICAL RESULTS TO BACKGROUND - QUARTER 3, 2023

845 QUARTERLY REPORT VERMILION POWER PLANT NEW EAST ASH POND OAKWOOD, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
35D	BCU	E002	Cobalt, total	mg/L	04/01/21 - 09/22/23	10	30	CI around geomean	0.000904	0.0900
35D	BCU	E002	Fluoride, total	mg/L	04/01/21 - 09/22/23	10	10	CI around median	0.65	0.430
35D	BCU	E002	Lead, total	mg/L	04/01/21 - 09/22/23	10	40	CI around geomean	0.000801	0.001
35D	BCU	E002	Lithium, total	mg/L	04/01/21 - 09/22/23	10	0	CI around mean	0.107	0.0300
35D	BCU	E002	Mercury, total	mg/L	04/01/21 - 09/22/23	10	100	All ND - Last	0.0002	0.0002
35D	BCU	E002	Molybdenum, total	mg/L	04/01/21 - 09/22/23	10	10	CI around mean	0.0107	0.00400
35D	BCU	E002	pH (field)	SU	04/01/21 - 09/22/23	14	0	CI around median	7.2/7.7	6.3/7.8
35D	BCU	E002	Selenium, total	mg/L	04/01/21 - 09/22/23	10	100	All ND - Last	0.0025	0.001
35D	BCU	E002	Sulfate, total	mg/L	04/01/21 - 09/22/23	15	0	CI around mean	1,060	338
35D	BCU	E002	Thallium, total	mg/L	04/01/21 - 09/22/23	10	100	All ND - Last	0.002	0.002
35D	BCU	E002	Total Dissolved Solids	mg/L	04/01/21 - 09/22/23	15	0	CI around mean	2,610	1,080
70S	UU	E002	Antimony, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.003	0.00500
70S	UU	E002	Arsenic, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.001	0.001
70S	UU	E002	Barium, total	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	0.0162	0.0820
70S	UU	E002	Beryllium, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.001	0.001
70S	UU	E002	Boron, total	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	0.347	0.430
70S	UU	E002	Cadmium, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.0005	0.001
70S	UU	E002	Chloride, total	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	13.4	20.4
70S	UU	E002	Chromium, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.005	0.00400
70S	UU	E002	Cobalt, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.001	0.0900
70S	UU	E002	Fluoride, total	mg/L	04/01/21 - 09/19/23	10	10	CB around T-S line	0.14	0.430
70S	UU	E002	Lead, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.0005	0.001
70S	UU	E002	Lithium, total	mg/L	04/01/21 - 09/19/23	10	0	CI around mean	0.0116	0.0300
70S	UU	E002	Mercury, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.0002	0.0002
70S	UU	E002	Molybdenum, total	mg/L	04/01/21 - 09/19/23	10	10	CI around mean	0.00499	0.00400
70S	UU	E002	pH (field)	SU	04/01/21 - 09/19/23	10	0	CI around mean	6.9/7.0	6.3/7.8
70S	UU	E002	Selenium, total	mg/L	04/01/21 - 09/19/23	10	100	All ND - Last	0.0025	0.001

Dara

ATTACHMENT C. COMPARISON OF STATISTICAL RESULTS TO BACKGROUND - QUARTER 3, 2023

845 QUARTERLY REPORT VERMILION POWER PLANT NEW EAST ASH POND OAKWOOD, IL

Well ID HSU Event Parameter Units **Date Range** Sample Count Percent ND **Statistical Calculation** 70S UU E002 Sulfate, total 04/01/21 - 09/19/23 10 0 CI around mean mg/L 70S UU E002 Thallium, total mg/L 04/01/21 - 09/19/23 10 100 All ND - Last UU 70S E002 Total Dissolved Solids mg/L 04/01/21 - 09/19/23 10 0 CI around mean 70D BCU E002 80 Antimony, total mg/L 04/01/21 - 09/19/23 10 CI around median BCU 50 70D E002 Arsenic, total mg/L 04/01/21 - 09/19/23 10 CI around mean mg/L 0 70D BCU E002 10 Barium, total 04/01/21 - 09/19/23 CI around mean 70D BCU 10 70 E002 Beryllium, total mg/L 04/01/21 - 09/19/23 CI around median 70D BCU E002 04/01/21 - 09/19/23 10 0 CI around mean Boron, total mg/L 70D BCU E002 Cadmium, total mg/L 04/01/21 - 09/19/23 10 100 All ND - Last 70D BCU E002 Chloride, total mg/L 04/01/21 - 09/19/23 10 0 CI around mean 70D BCU E002 Chromium, total 04/01/21 - 09/19/23 10 20 mg/L CI around geomean 70D BCU 10 E002 Cobalt, total mg/L 04/01/21 - 09/19/23 10 CI around geomean 10 70D BCU E002 04/01/21 - 09/19/23 10 CI around mean Fluoride, total mg/L 70D BCU E002 04/01/21 - 09/19/23 10 20 Lead, total mg/L CI around geomean 70D BCU E002 04/01/21 - 09/19/23 10 0 CI around mean Lithium, total mg/L 70D BCU E002 Mercury, total mg/L 04/01/21 - 09/19/23 10 100 All ND - Last BCU E002 20 70D Molybdenum, total mg/L 04/01/21 - 09/19/23 10 CB around linear reg 70D BCU E002 SU 04/01/21 - 09/19/23 10 0 CB around linear reg pH (field) 80 70D BCU E002 mg/L 04/01/21 - 09/19/23 10 Selenium, total CI around median 0 70D BCU E002 04/01/21 - 09/19/23 10 Sulfate, total mg/L CI around mean BCU 100 All ND - Last 70D E002 Thallium, total mg/L 04/01/21 - 09/19/23 10 70D BCU E002 10 0 Total Dissolved Solids mg/L 04/01/21 - 09/19/23 CB around linear reg BCU E002 SU 5 0 71D pH (field) 04/01/21 - 09/19/23 CI around mean

Statistical Result	Background		
598	338		
0.002	0.002		
1,220	1,080		
0.001	0.00500		
0.000443	0.001		
0.445	0.0820		
0.001	0.001		
1.09	0.430		
0.0005	0.001		
503	20.4		
0.00352	0.00400		
0.00161	0.0900		
0.399	0.430		
0.00144	0.001		
0.0698	0.0300		
0.0002	0.0002		
-0.031	0.00400		
6.2/7.4	6.3/7.8		
0.001	0.001		
47.5	338		
0.002	0.002		
871	1,080		
6.7/7.6	6.3/7.8		

ATTACHMENT C.

COMPARISON OF STATISTICAL RESULTS TO BACKGROUND - QUARTER 3, 2023 845 QUARTERLY REPORT VERMILION POWER PLANT NEW EAST ASH POND OAKWOOD, IL

Notes:

Lower Confidence Limit (LCL) or Upper Confidence Limit (UCL) exceeded the statistical background value HSU = hydrostratigraphic unit:

BCU = Bedrock Confining Unit

UU = Upper Unit

mg/L = milligrams per liter

ND = non-detect pCi/L = picocuries per liter

SU = standard units

Sample Count = number of samples from Sampled Date Range used to calculate the Statistical Result

Statistical Calculation = method used to calculate the statistical result:

All ND - Last = All results were below the reporting limit, and the last determined reporting limit is shown

CB around T-S line = Confidence band around Thiel-Sen line

CB around linear reg = Confidence band around linear regression

CI around geomean = Confidence interval around the geometric mean

CI around mean = Confidence interval around the mean

CI around median = Confidence interval around the median

Statistical Result = calculated in accordance with the Statistical Analysis Plan using constituent concentrations observed at each monitoring well during all sampling events within the specified date range For pH, the values presented are the lower / upper limits of the background determination

